
DESIGN OF A GRAPHICS

DISPLAY SYSTEM

by

John J, Hudak

Electrical and Computer Engineering Dept.

Carnegie-Mellon University

THE DESIGN OF A

VIDEO DISPLAY GRAPHICS PROCESSOR

Submitted In Partial Fulfillment Of The Requirements For

The Degree Of Master Of Science

Electrical Engineering

by

John J. Hudak

Electrical and Computer Engineering Department

Carnegie-Mellon University

Pittsburgh, Pa.

April 30, 1984

A Video Display Graphic Processor

Abstract

To aid in the study of neural reflexes of the ocular nerves of

various subjects, the Biomedical Department is in need of a general

graphic display processor. The primary purpose of the graphic

display in this case is to display a variety of objects and have

them move in certain pre-programmed paths. These moving

when placed before a subject such as a frog,

stimulate the ocular nerves whose impulses will then

and analyzed. Further on in the cycle of

processor will be connected to a host 68000 based

system. This system will enable the 68000 to download images and

control the movement of patterns displayed to the subject under

test and in effect, close the feedback loop.

objects,

will serve to

be recorded

experiments, the

multi-processor

The motivation for this project is two-fold in nature. The

first concern is that a versatile, low cost interactive graphic

system can be implemented with current state of the art MSI and LSI

designs and secondly, by using LSI devices with the appropriate

support circuity, design and build the necessary hardware and

specify the software outline to produce such a graphic system.

Until recently, many designs to produce low cost, interactive

graphic displays centered about devices such as CRT controllers and

single chip/system microcomputers. While it is possible to produce

relatively simple graphic images by these methods, it becomes

almost impossible to generate more complicated multiple (>3) images

and support the animation program while at the same time acting

interactively with the user.

The use of a "two part" system consisting of a microprocessor

and video graphic processor would alleviate the problems

encountered above and would fulfill the premise of a low cost

interactive graphic system. The microprocessors’ function would

include interpreting user commands, update display files and

implementing the animation subroutines. The video processor would

control the storage, retrieval and refresh of the display data in

the dynamically refreshed memory, provide the necessary video

timing (ie. H sync V sync, etc.) and originate the composite video

for the CRT display. This method provides an efficient solution to

the project goals.

This project is centered around the hardware design and

implementation, along with a limited set of graphic primitives to

demonstrate the workability of the design. To date, graphic system

implementations have taken the following approches. They are: 1)

frame buffers (single and multiple), 2) real time scan conversion,

3) run length encoding and 4) cell organized displays. Generally

these techniques employ fast, expensive hardware and optimized

software which increases the cost of many systems. With the advent

of a new generation of commercially avaliable IC’s (termed a Video

Display Processors (VDP)), the realization of lower cost

versatility become closer at hand.

Some of the more prominent design goals to be addressed by the

project are: 1) the capability to generate and animate various

shapes such as open and solid geometric shapes (ie. circles,

triangles, etc.) 2) multiple images, 3) varying images sizes,

reverse video capabilities and 5) flicker free animation. The

display area will be 192 by 256 pixels (aspect ratio of 3:4) and

will also have the capability of a limited gray and color scale.

Therefore, the project will consist of designing and assembling the

essential hardware and specifying the necesary software that needs

to be be incorporated to yield a stand alone interactive graphic

display. Basically the hardware building blocks will consist of a

R6502 microprocessor system in conjunction with the VDP and

associated support hardware such as video RAM, clock stretching and

deskew circuitry and NTSC video signal conditioning circuitry. The

system must also be able to service either a terminal and/or a high

speed serial data link to the host 68000 system. A list of graphic

primitives will be specified and some will be implemented to

demonstrate the workability of the hardware. These primitives

would fall into the skeletal form of the graphic operating system.

ACKNOt,/LEDGEMENTS

The author is indebted to many people for their help and

generosity during the development of this thesis. The author is

very grateful to teachers, relatives, and friends who have assisted

and encouraged him during all these years.

The author thanks Dr. Arthur Sanderson who provided the

guidance and persevered throughout the duration of the project.

Also the author acknowledges the thesis committee: Dr. Douglas

Jensen and Dr. Ronald Krutz.

The author is grateful to Dr. Ronald Krutz for allowing him to

use the computer facilities at the Mellon Institute, Computer

Engineering Center and for his encouragement throughout the

project. A special thanks goes to Glen P. Williams of the Computer

Engineering Center a close friend who always had time to listen and

critique ideas and offered support during the project development.

The author can never fully acknowledge the support of his

parents, Mr. John Hudak and Mrs. Mary Hudak for their understanding

and support.

Finally, the author is grateful for the skillful proof-reading

and critiquing of this thesis by Mr. Tron McConnell, Ms. Agapi

Svolou, and to his sister, Mrs. Janet Skoner. Special thanks go to

Mr. Gordon Wenneker for helping the author prepare the system

schematic and to Ms. Trisha McAleavey for helping to assemble the

manuscript.

Abstract
Acknowledgements
Table of Contents
Symbol Conventions Used

CONTENTS

i
iii

v

vi

I. - Introduction I

1.1. - Graphics Systems

1.2. - Hardware Design Overview
1.2.1. - The Microprocessor System
1.2.2. - The Video Display Processor System

3

1.3. - Software Design Overview 10
1.3.1. - Graphics Primitives 11
1.3.2. - Windowing Commands 12
1.3.3. - Display File Creation and Minipulation 12
1.3.4. - Animation File Attributes 13
1.3.5. - Control and Miscellaneous Commands 14
1.3.6. - Editor Commands 15

2. - Hardware Design 17

2.1. - General Graphics System Architecture 18
2.1.1. - Microprocessor/Bit-Slice Design 20
2.1.2. - The MSI/LSI Design 23

2.1.2.1. - Cell Organized Displays 23
2.1.2.2. - Run Length Encoding 25

2.1.3. - The Video Display Processor (VDP) 28
2.1.3.1. - System Design With The VDP 29
2.1.3.2. - Video Memory Organization 32
2.1.3.3. - Limitations and Solutions 40

2.1.3.3.1. - Pattern Table Length Solutions 41
2.1.3.3.2. - Color Table Limitations 45

2.1.3.4. - Sprites and Their Use 46
2.1.3.4.1. - Sprite Pattern Generation 46
2.1.3.4.2. - Sprite Motion 50

2.1.3.5. - Text Information 52
2.1.3.6. - Object Mapping Algorithm 52

2.1.3.6.1. - Point Mapping Into Video RAM 52
2.1.3.6.2. - Mapping Algorithm Implementation 53

3. - Software Design 59

3.1. - Overview

3.2. - System Concepts

59

61

- ii -

3.2.1. - Microcomputer Monitor/Debugger 61
3.2.2. - Microcomputer Monitor Graphic Extention 63
3.2.3. - Download Program 63
3.2.4. - Terminal Interfacing 65

3.2.4.1. - Queues and Queues Handling 67
3.2.4.2. - Software Implementation 70

3.2.5. - Lexical Scanning and Parsing 74
3.2.5.1. - Overview 74
3.2.5.2. - Tokens 76
3.2.5.3. - Transition Diagrams 77
3.2.5.4. - Command Lines 78
3.2.5.5. - Regular Expressions 80
3.2.5.6. - Context-Free Grammar 82
3.2.5.7. - LR Parsing 83

3.2.6. - Assembly Language Implementation 85
3.2.6.1. - Command Line Retrevial 85
3.2.6.2. - Keyword Recognition 87
3.2.6.3. - Parsing a Command String 89
3.2.6.4. - Command Interpretation 94

3.2.7. - Major Algorithm Design 96
3.2.7.1. - Line Drawing Algorithms 97

3.2.7.1.1. - Symmetrical DDA 98
3.2.7.1.2. - The Simple DDA 100
3.2.7.1.3. - Bresenham’s Algorithm 102

3.2.7.2. - Circle Generation 105
3.2.7.2.1. - The Circle DDA 105
3.2.7.2.2. - Bresenham’s Circle Algorithm 106

3.2.7.3. - Painting Algorithms 111
3.2.7.3.1. - Recursive Pixel Painting 111
3.2.7.3.2. - Recursive Scan Line Filling 112

3.2.8. - Error Handling 122
3.2.8.1. - Error Reporting 122
3.2.8.2. - Error Detection 127
3.2.8.3. - Error Correction 128

4. - Language Design 129

4.1. - Introduction

4.2. - Design Issues

129

129

4.3. - Functional Domains 131
4.3.1. - Graphics Primitives 133
4.3.2. - Windowing Functions 136
4.3.3. - Display Files Creation and Manipulation 138
4.3.4. - Animation File Creation and Manipulation 141

4.3.4.1. - Mechanics of Object Animation 145

- iii -

4.3.4.1.1. - Building the Animation Block
4.3.4.1.2. - Sprite Allocation
4.3.4.1.3. - Object Image Transfer
4.3.4.1.4. - Color Transfer
4.3.4.1.5. - Object Removal
4.3.4.1.6. - Object Motion

4.3.5. - Control and Miscellaneous Functions
4.3.6. - Editor Commands

145
146
148
148
148
149
150
151

5. - Contributions 154

5.1. - Summary of the Project

5.2. - Thesis Contributions

5.3. - Recommendations for Future ~Jork
5.3.1. - Hardware
5.3.2. - Software

154

155

157
157
157

References

.Appendi~

A. Texas Instruments TMS 9918 Data Manual
B. Mathematical Derivation of the Circle Drawing Algoirthm
C. Monitor Commands and Usage
D. Implemented Commands and Usage
E. System Schematic
F. Board Photographs
G. Sample Display Files
H. Photgraphs of Monitor (Execution of Display Files)
I. Creating Display Files Downloading to the

Graphics Machine Under Unix
J. Graphics Interperter Source File
K. Download Program Source File

Conventions Used Throughout This Thesis

Represents hexidecimal notation

subroutine GETCHR Subroutine names are capitalized

variable CHAR Variable names are capitalized

Indicates a subroutine GETCHR, Numbers indicate
possible error codes generated by the subroutine.

Represents program flow, number indicates path
number

Indicates a two or three way decision

Logical OR or union

Closure operator indicating zero or more instances

() Indicates a subset

Represents division

2 exp n-1 Equlivalent to 2n°~

- 1 -

1. Introduction

The term "graphics system" is one of the many terms in

electrical engineering and computer science that has multiple

definitions. Graphics systems can range from a video game as

simple as the early PONG game through large systems such as General

Electric’s CALMA systems. Recently, video games represent the

first major use of computer graphics in the home. Basically these

games create and manipulate pictures with the aid of a computer

(microprocessor). The user provides feedback to the system through

the use of joysticks, push-buttons or potentiometers. The video

display quality provided by these systems range from low to medium

resolution. In general these systems are limited in their video

quality by two factors. The first is the display technology.

Generally, the displays used in these games are color or black and

white "television quality" raster scan devices that have a video

bandwidth of 13-15 MHZ. Secondly, the graphics engine that creates

and clocks out the pixel information is relatively slow compared to

high performance systems. At the present time, the cost of high

performance CPU(s) and video memory rises exponentially with the

speed factor. These are the two main limiting hardware conditions

that exist in designing a graphics system.

At the other end

systems, are things

and CAD/CAM systems.

of the spectrum, the high end graphics

such as real time flight simulators/trainers

These systems consist of extremely high

resolution displays with video bandwidths greater than 100 MHZ that

can accommodate at least a 1024 by 1024 pixel display format. In

- 2 -

addition,

a number

generation

the graphics engine is for the most part subdivided into

of tightly coupled engines. They are the object

Central Processing Unit (CPU), display list manager cpu

and object animation/display cpu. In many cases these machines are

16/32 bit cpu’s, or specially designed bit-slice/LSI devices.

Depending upon the desired performance of the product, these

building blocks are optimized and combined accordingly.

This thesis deals with the lo.wer end of the

spectrum. The goals of this work can be

following points:

graphics system

summarized by the

To design and implement a low cost graphics
system with the ability to easily create and
animate objects.

To specify, and to a limited extent implement, a
graphics language that can generate objects and that
has the necessary "software hooks" to implement
the part of the language aimed at animation.

The keywords to be highlighted are "low cost", "specify", and

"animation". Low cost is defined to mean that the hardware cost

should be in the range of $100 to $150 for a stand-alone graphics

processor. "Specify" means to develop the language constructs that

are needed to do the job. "Animation" is used in the context of

using the frequency, direction (x,y,z axis), and delay as motion

attributes of an object.

This thesis discusses the methodology used to design both

hardware and software. The initial thrust of this project was to

develop only the graphics hardware. Through subsequent discussions

- 3 -

with advisors and other graduate students, the language aspect

became more significant. This thesis represents the results of

these discussions along with some enhancements deemed appropriate

by the author.

1.1. Graphics Systems

Graphics systems can be configured in many ways, depending

their intended use. At one extreme is the "stand alone"upon

graphics system shown in Figure 1-1. Nearly all of the system’s

computing capabilities and most of its memory resources are

dedicated to the display task. Systems such as image processors,

computer aided design (CAD), and graphics work stations fall into

this category.

At the other end of the extreme is the configuration depicted

in Figure 1-2. Nearly all of the graphics-generation functions

must be performed by the host computer’s hardware and software.

The graphics system is reduced to a graphics terminal and the

display generation elements of the host interface.

Raster graphics systems fall midway between these two

configurations. With few exceptions, smaller stand-alone graphics

systems rarely have the computing power to perform all of the

extensive modeling and viewing functions required to convert source

data to graphics form. The generation of a raster graphics display

can, at the same time, impose a severe burden on a host computer’s

processor and memory resources. To overcome this problem, the

concept of a graphics engine or controller has been developed.

-4-

GRAPHICS SOFTWARE

GRAPHICS

~

GRAPHICS

~

COMPUTER CONTROL LE R

Figure l-f- Distribution of graphics-system software functions.

HOST
COMPUTER TERMINAL

...__J

Figure "J-~_ ;ntelligent terminal with "graphics" cap,3bililies.

- 5 -

The graphics engine is responsible for a large portion of the

repetitive graphics functions such as video memory accesses, pixel

clocking, and in more advanced implementations, updates of display

lists and user interface.

The term "graphics engine" can be applied to devices that

range from integrated circuit (IC) components to dedicated mini and

mainframe computers that are utilized for graphics tasks. The

early video games are examples of IC implementations of this type

of system. In the move towards offloading the microprocessor of

various graphics tasks, the video display processor (VDP)

graphics display controller (GDC) have surfaced. These devices may

contain some or all of the following features: eight bit parallel/

bidirectional data bus, interrupt structure, direct video RAM

access/update, microprocessor memory DMA, generation of National

Television Systems Committee (NTSC) composite color video

information/horizontal/vertical signals, high speed (’25 MHZ) pixel

clock rates, and video RAM refresh if dynamic RAM’s are used.

1.2. Hardware Design Overview

1.2.1. The Microprocessor System

The approach that was used to accomplish this project was to

design a 6502 microprocessor based system and couple it with a

Texas Instruments TMS 9918 VDP. The microprocessor system was

designed to include the following capabilities:

- 6 -

Sufficient RAM to create/edit/store display lists.

Sufficient serial ports to communicate with the
user’s terminal and also to down/upload information
to a host computer.

c. Parallel ports to interface to user devices such as
a joystick, trackball, etc.

d. Sufficient timers to permit the animation of a
number of objects or to start/stop tasks in a
multi-tasking environment.

The designed system block diagram can be seen in Figure 1-3. The

form factor wire-wrap6502 based system resides on one S-100

prototype board. It includes:

Two R6551’s Asynchronous
Adapters (ACIA) for the
terminal and host computer.

Communication Interface
RS-232 link to the users

A MC6840 timer that contains three
able to operate in various modes.

hardware timers

A R6522
contains
ports.

Versatile Interface Adapter (VIA) that
two hardware timers and two 8-bit parallel

8K bytes of static RAM.

16/32K bytes of ROM that
processor/VDP monitors,
graphics interpreter.

contain the micro-
download program and

1.2.2. The Video Display Processor System

The microprocessor system communicates with the video display

section. The graphics board specifications were as follows:

The display area was to be 192
aspect ratio).

X 256 pixels (3:4

RESET &

CLOCK

Do-D7

6502

AO-A7

A8-A15

CHIP

SELECT

CIRCUITRY

74LS245

BUFFER

74LS244

BUFFER

CS LINES

EPROM

(2K x 8)

16K TOTAL

TO/FROM BACKPLANE

RAM (2114)

(IK x 4)
8K TOTAL

CS 6522

DATA

ADDRESS

VIA

(TIMER 1
20 I/0 LINES

684O
PROGRAMMABLE TIr.IER

(TIMER 2)

6551
ACIA

(PORT 1)

RS-232C

6551
ACIA

(PORT 2)

RS-232C

Microprocessor Board Block Diagram

Figure 1-3

- 8 -

Black and white was essential and
not necessary.

The movement of objects should not
the microprocessor.

The foreground/background colors could
exchanged instantaneously (reverse video).

Object movement should be flicker free.

System should
planes or VDPs).

color was

overburden

be

be expandable (re: multiple display

Many designs for this portion of the system were considered.

areas investigated include single and multiple frame buffers,

run-length encoding

The

real time scan conversion hardware, optimized

hardware and cell organized displays. As will be pointed out

later in the paper, these approaches had both good and bad

qualities. The reason they were discarded was their cost was too

high. The VDP had just appeared on the market and although it was

a first generation device, it had a number of important attributes

that allowed such a system to be designed at a low hardware cost.

The graphics board block diagram can be seen

It consists of the following devices:

in Figure 1-4.

- The TMS 9918 VDP.

- 16K bytes of video RAM.

- Composite video amplifier and CRT interface.

- Interface to the host CPU.

- Address decoding.

-9-

TO/FROM BACKPLANE

t
CHIP SELECT

LINES

A
D
D
R
E
S
S

B
U
S

RESET
&

CLOCK

9918

VIDEO
DISPLAY
PROCESS.

16K BYTES

(4116, 16K x 1)

BUFFER

V I DEO
RAM

COMPOSITE
NTSC VIDEO

OUT

Video Display Processor (VDP) Board Block Diagram

Figure 1-4

-10-

The graphics subsystem was connected to the $100 form factor

backplane, and the VDP appeared as a memory-mapped peripheral in

the main (6502) processor’s address space, allowing fast and

efficient information transfer.

1.3. Software Design Overview

In order to make the graphics system

graphics commands and support software

implemented. The scope of this task was

exceed the project definition.

useful, a limited set of support

written. This included:

large

In order

software

functional, a set of

had to be designed and

enough to easily

to make the hardware

was specified and

- A microprocessor monitor (adapted from another system).

- A graphics processor monitor.

- A download program.

- Terminal handler (user interface).

- Lexical Analyzer.

- Command interpreter.

- Graphics language.

only

handler, lexicaL analyzer and command

take this into account. Support

entire graphics language command set,

included in the system.

The scope of the graphics language was sufficiently large that

a subset was implemented in the current system. The terminal

interpreter design had to

for the implementation of the

and also an editor, were

-11 -

In order to make the system as independent as possible for

support of file systems, an editor would be required. Because of

the size of the

capable of executing

fully developing this

implementation.

machine, a rather simple, but

14 commands was specified.

graphics editor was left

useful editor,

The problem of

for future

To provide the reader with an introduction and overview to the

language and its grammar, the system

below. While a complete set of system

only a subset were implemented. The

marked with an asterisk.

commands can be reviewed

commands were specified,

commands implemented are

1.3.1. Graphics Primitives

* a) MOV M,X1,Y1

* b) VEC M,C,X1,Y1

c) BARC M,C,X1,Y1

d) MARC M,Xn,Yn

- Move cursor to new location specified

by Mode (M), to X,Y

- Draw a line from current position to a

point specifed by Mode (M), position X,Y,

with Color (C).

- Draw an arc with this point as a defined

beginpoint with Mode (M), Color (C),

position X,Y.

- Draw an arc with these sets of control

points specifed by Mode (M) thru

points X,Y.

f) EARC M,Xn,Yn

g) ARC M,R,C,X,Y,D

h) DTX C,"xxx"

* i) CIR M,C,R,X,Y

-12-

- Draw an arc with this point as the

defined endpoint specifed by Mode (M),

to point X,Y.

- Draw an arc thru a set of defined points

with radius (R), Color (C), center (X,Y),

thru D degrees.

- Display the string characters with

Color (C).

- Draw a circle with Mode (M), Color (C),

Radius (R), with center at X,Y.

RECT M,C,X1,Y1,X2,Y2 - Draw a rectangle (square) with Mode (M),

Color (C), with Length X1,Y1, Width X2,Y2.

1.3.2. Windowing Commands

a) SWD X1,YI, X2,Y2 - Set window using X1,Y1 and X2,Y2 as length

and width from current cursor position.

b) SVP X1,Y1, X2,Y2 - Set viewport using X1,Y1 and X2,Y2 as length

and width from current cursor position.

1.3.3. Display File Creation and Minipulation

a) DEFIL xxx - Define an image file with name xxx.

b) ENDFL - End image file name xxx.

c) LSTFL xxx

d) DSFIL xxx

e) RMFIL xxx

f) CALLI xxx

g) RETIF

- 13 -

- List the image file xxx.

- Execute file name xxx.

- Remove image file with name xxx.

- Subroutine call to image file xxx.

- Return from subroutine call.

1.3.4. Animation File Attributes

a) PATHXY X,Y - Indicates the points X,Y thru which the

object will move.

b) VEC X1,Y1,X2,Y2 - Describes a linear path for an object

between endpoints X1,Y1 and X2,Y2.

c) DELAY nnn - Defines the time period in seconds to

delay object motion.

d) REP nnn - Defines the number of times to repeat the

objects movement. The movement between

endpoints A and B would have the

form: A-B, A-B, A-B.

e) OSCIL nnn - Permits the motion of an object to be

repeated in an oscillatiory manner,

(i.e. A-B-A-B-A-B..), nnn times.

f) START xxx - Starts the movement of object xxx.

-14-

g) STOP xxx - Stops the movement of object xxx.

h) TIME nnn - Defines the time in seconds for the objects

traversal of a path.

i) SYNC n,X,Y,i - Starts the movement of object n when

object i reaches point X,Y.

1.3.5. Control and Miscellaneous Commands

* a) CLRSC - Clear the screen.

* b) INTIG - Initiate graphics mode.

* c) REVID - Reverse video (Reverses foreground and

background color).

* d) PAINT ccc - Colors an object with color specifed.

* e) CURSO - Turns cursor on.

* f) CURSF - Turns cursor off.

* g) CURPOS

coordinates.

Displays the absolute cursor

* h) SETBGC ccc - Sets the background color.

* i) SETFGC ccc - Sets the foreground color.

* j) SETBDC ccc - Sets the backdrop color.

* k) SETCC ccc - Sets the cursor color.

-15-

L) STAT - Displays the system status consisting

of: cursor X,Y position, window and

viewport dimensions, foreground, color,

number of display files, and memory

available.

* m) COLCUR ccc - Sets the cursor color to the color

specified.

1.3.6. Editor Commands

a) ed xxx - Invokes the editor for use with filename xxx.

b) - Inserts a new line.

c) - Deletes a line.

d) w xxx - Writes out the newly edited file.

f) - Quits the editor without saving any changes

made.

g) - Append to the end of the file.

h) - Go to the beginning of a file.

i) - Print current line.

j) .+n - Go to and print line n lines ahead of

current line.

k) .-n - Go to and print line n lines before current

-16-

line.

l) cr - Advance thru file line by line.

m) - Go backwards thru a file line by line.

n) - Substitute a character or string for a

character or string.

o) /xxx/ - Search for a character or string.

-17-

2. Hardware Design

The hardware design aspect of this project provided many

challenges because of the constraints imposed by the specifications

and the requirement for low hardware cost. The objects to be

generated were relatively simple geometric shapes, such as circles,

triangles, and rectangles. Difficulties arose from the fact that

they had to be moved around on the screen without any flicker.

There could be as many as three objects, each with a different

direction and rate of movement. The objects could either be

outlines or solids. In some cases, it would be required

the screen exhibit reverse video characteristics

flickering. With these specifications outlined, the

technology evaluation and hardware design began.

to have

without

task of

The first task that was performed was an assessment of display

technologies. The specification governing this aspect of the

project was animation of objects. Many different types of display

devices and methods exist for implementing graphics systems. They

range from liquid crystal displays (LCDs), dot matrix displays, and

projection screens to electroluminescent displays. Many of these

types of display devices were not suitable for a variety of

reasons. The survey of display technologies revealed basically two

types of usable displays: a basic cathode ray tube (CRT) and a CRT

storage tube. The CRT could be used either as a raster or vector

device. The storage tube closely resembles a direct writing CRT

with one important difference. The storage tube construction

consists of a writing beam gun and a flood gun. These guns, in

-18-

conjunction with a collector and storage grid allow objects to be

displayed on the screen without very fast refresh cycles, as

compared to a vector or raster CRT. In terms of performance, the

storage tube is somewhat inferior to the refreshed CRT. Only a

single level of line intensity can be displayed, and only green

phosphor tubes are available. Since object movement was specified,

the refreshed CRT was the necessary choice.

The choice of a refreshed CRT raised the question of whether

to use the vector or raster display update techniques. Vector

display electronics are very expensive and display uniformity can

be lost in the process. In order to display a large number of

objects on the screen, the electron gun has to move very rapidly

across the screen. As the number of objects and/or the object

complexity increases, the "flicker" of the displayed image becomes

more noticeable. In order to overcome the flickering, a higher

bandwidth CRT and faster video digital-to-analog (d/a) converters

are required, which in turn would drive the cost up prohibitively.

With a high speed raster display, the display

subsequent parallel to serial conversion

relatively high rate of speed for lower cost

vector display electronics.

raster display CRT.

memory access and

can be done at a

as compared to the

It was therefore decided to use the

2.1. General Graphics System Architecture

The basic hardware architecture of a general purpose

system can be seen in Figure 2-1.

graphics

-19-

Grap;ics
System Sw.

Host

Processor
Terminal

’ I/0

Devices

Graphics

Processor

uP

Memory

DNA

(optional)

Video

Buffer

Video
Memory

Hardware architecture of a
general purpose graphics system

Figure 2-1

- 20 -

It consists of the host processor and associated memory, the video

memory or frame buffer, the video controller, and the CRT driver

electronics. A microprocessor was the obvious choice for the host

processor, but what about the video processor? Three possible

solutions were considered:

I)

2)

3)

A microprocessor/ bitslice processor.

Discrete MSI/LSI TTL logic.

3) NMOS video display processor (VDP).

Each design had both pros and cons associated

reviewed below.

with it which are

2.1.1. Microprocessor/Bit-Slice Design

A

would require two banks of memory.

algorithms to selectively "poke"

information, and to maintain color

The microprocessor/bit-slice design looked rather favorable.

basic system architecture appears in Figure 2-2. The processor

The first bank containing the

video RAM with the correct

tables. The first bank of

memory might also contain software generators to construct straight

lines and circles. The second bank of memory would be the video RAM

(frame buffer), which

updates as well as to

screen.

would be dual ported to allow frame buffer

clock out the video information to the

The support circuitry would be responsible for generating the

-21-

(a) System Configuration

(b) Bit-Slice Graphics Processor
Block Diagram

Figure 2-2

- 22 -

horizontal and video sync signals, the video (either NTSC composite

or RGB), and handling various screen attributes if required. The

generation of the sync (horizonatal and vertical) signals could

done by the programmable timer, which could be easily changed

depending on the screen resolution.

Since the system was only to be monochrome with perhaps three

bits of gray scale, multiple color planes were not considered in

the design. The incorporation of multiple planes

the complexity of both the microprocessor’s

hardware to switch between planes.

would increase

software and the

The display processor would have to be a rather high speed

machine in order to obtain the necessary throughput. Consider the

case of the straight line Digital Difference Analyzer (DDA)

algorithm residing in the display processor. The host processor

would pass the endpoints of a line to the display processor through

a buffer. The display processor would then calculate each point to

be "turned on" and in turn, update the video RAM. The faster it

could do this, the more quickly complicated objects could be

"drawn" in video RAM. In order to provide animation capabilities,

an object would have to be erased and then re-drawn at some other

location according to the object’s rate of movement. This process

is called screen updating. The screen update time is dependent

upon two factors: the processor speed and video RAM access time.

Faster processors and/or video RAM improve the uniformity of motion

that can be achieved. The uniform movement of small symmetrical

objects would not pose a problem. As the number of objects

- 23 -

increases, an undesirable situation occurs where parts of one

object move in one frame display and the remainder of the object

moves in the next frame display. If the objects to be moved

consists only of an outline, speed would not be a big problem.

However, solid areas would require larger processor bandwidth.

At the time of design of this project, the faster 16-bit

processors were just beginning to become available. Their cost was

many times that of the 8-bit machines. In addition, the memory

requirements were doubled, thereby increasing the memory cost. The

8 and 16 bit processors, being manufactured using NMOS technology,

were not capable of running at high speeds. At that point, the

bitslice technology looked promising with the AMD 29116 a likely

candidate. The introduction of the VDP chip, to be described

later, proved to be a better alternative.

2.1.2. The MSI/LSI Design

2.1.2.1. Cell Organized Displays

The MSI/LSI design approach was also considered. A block

diagram of this system can be seen in Figure 2-3. It consists of a

group of chips generically called "CRT controllers", the necessary

hardware line generators, and video RAM controllers. This design

approach yields a cell-organized display in which the screen is

divided into a number of square or rectangular cells, each of which

is treated like a character position of

Each horizontal row of picture cells

string.

an alphanumeric display.

is stored as a character

Encode and
UART Function I_~~ Keyboard

Terminal

t
CommunclaJlon,, Covertlon

CRT
Controller Video

2 SYNC

¯

Character RAM

Cel I --

Cell organized display - Block Diagram

Figure 2-3a

generatorJ

~’6 bit~

load :~l

Run length display - Block diagram showing left and right
memory buffers (LHEH,RI4EH), decod.ir~g registers, (PDSP.B,
DSPB), and gray level n~pping (GLO, GL1).

Figure 2-3b

- 25 -

By means of a special

logic, the correct

the required picture.

font, together with masking and .overlay

pattern is displayed in each cell to generate

Depending upon the cell size, a large

repertoire of characters is required to display line drawings in

this way. By using techniques of cell masking, concatenation, and

mirror imaging of characters, the number of different characters

could be reduced. The best reduction techniques yield a font of

about 100 different cells.

2.1.2.2. Run Length Encoding

Another MSI/LSI implementation approach that was considered

was run-length encoding. This is a technique for more compact

storage of images involving solid areas of gray tone or color. An

example of such an image is shown in Figure 2-4a. In examining a

typical scan line from this image, it can be seen that many

consecutive pixels have the same intensity. Instead of storing

each pixel separately one can store the length and intensity of

each run of identical pixels. Therefore each encoded scan-line

consists of one or more instructions, each instruction defining a

run length and intensity value (Figure 2-4b).

The use of run-length encoding can offer considerable savings

in the amount of memory and memory bandwidth needed to store

certain classes of images. For objects such as the one in Figure

2-4a, memory requirements can be as little as 1% of the

requirements for a frame buffer. More complicated objects prove to

be the weak point of run-length encoding.

-26-

(a)

(b)

The scan line indicated in (a) is shown
encoded in (b).

Fi gure 2-4

A difficult object to run length encode.
Note the highlights and shading.

Figure 2-5

- 27 -

Consider the image in Figure 2-5. The pattern of alternating on/

off or grayshade/off pixels would require approximately 1.5 times

as much memory requirements to store in run-length encoded format

as to store in a standard frame buffer format. For each run, both

length and intensity values are stored. If each pixel alternates,

the amount of information required for that scan line doubles.

Neither run-length encoding nor the use of character cells is

a satisfactory approach to the construction of an interactive

display. Both approaches make modification of the displayed object

difficult, violating a prime requirement for object animation. In

run-length encoded images the sequence of run-length codes must be

rearranged every time a scan line is modified, and the need for

instruction sequences of variable length puts a heavy load on the

free memory storage allocation/deallocation system that provides

blocks of memory to store the sequences. The cell organized

display has a very similar problem, although a jump mechanism to

different cell fonts can make display modification easier. In

addition, both the run-length encoded display and the cell

organized display have performance limits beyond which they begin

to distort images. Only the frame buffer c~n provide display

capability beyond these limits. Because the display processor was

to be as general as possible and was to be able to deal with almost

any object and its motion, the run-length encoding and cell

organized display techniques were not considered further.

- 28 -

2.1.3. The Video Display Processor (VDP)

The advent of ICs of higher density and increased complexity

led to the introduction of the single package IC version of a video

display controller. The VDP contains a number of features that

make object generation, motion, and display, easier and more cost

effective. During the course of the hardware design of the video

system described in this thesis, the video processors that were

available were oriented more towards game and terminal applications

rather than graphics display functions. The Texas Instruments

TMS9918 VDP, for example, is oriented towards game applications,

but it contains features that, when used in unique ways, allow it

to become more of a general purpose graphics engine.

A partial list of the TMS9918 VDP features are as follows:

a)

b)

c)

d)

e)

f)

g)

h)

Single chip interfacing to monitors (eith~er NTSC or RGB).

256 x 192 resolution, 60 hz screen refresh rate.

15 unique colors, 8 gray levels.

Direct writing to video RAM.

Multiple VDP use and synchronization.

Thirty-five display planes.

Thirty-two of the thirty-five planes
positionable.

Four modes of operation.

directly X-Y

These features allowed an economical but powerful graphics

system to be configured. While it is true that there are some

- 29 -

deficiencies with the system, the system was designed around this

device because of some of its unique features, especially the

display plane concept. The VDP’s limitations will be pointed out

in the subsequent discussion, and the solutions used to circumvent

them will be described also.

2.1.3.1. System Design With The VDP

The overall system design is shown in the schematic, Figure

2-6. The 6502 microprocessor is configured with up to 8K/16K of

EPROM space, 8K of RAM space, two ACIA’s, a combination parallel

interface/timer(2), and a multimode timer chip that contains three

timer/counters. The use of the two ACIA’s is somewhat obvious:

the first serves as the user’s terminal interface, while the second

one is the host machine’s interface. The terminal interface is

supported by about 2K of software. This terminal handler software

supports character echo, delete/rubout, horizontal tabs, and

control-C traps. These features plus additional capabilities are

discussed in the Software Development section.

The need for the second ACIA stems from the possibility of

connecting to a host machine. The software supporting this port

consists of a download program which can accept assembled 6502

code, in ASCII hex-space format, and can load it into the

microprocessor’s RAM. Much of the development wore of the graphics

software was performed using this capability.

- 30 -

Graphics System Schematic

Figure 2-6

- 31 -

The timers were required for a number of functions, but were

included primarily to provide a source of motion rates. A maximum

of five different objects can be moved at different rates. All of

the timers are connected to the microprocessor’s interrupt (IRQ)

line, thus providing a fast and efficient method of updating object

positions.

A timer was also required for frame buffer time slicing. This

slicing is done both on the single frame itself and could also be

done with multiple frames. This function will be discussed in a

later section.

As indicated by the schematic, the VDP is memory mapped into

the microprocessor’s address space. The VDP can be read and

written through a sequence of successive accesses. For example, to

write to video RAM, the host processor must first write the high

byte of the video RAM to the VDP address followed by the low byte

of the video RAM address, and then the desired data. Similarly, a

read of video RAM is performed by two successive writes,

the video RAM address, followed by a read from the VDP.

ensure that this process is not

write operation because these

complete data sheet for the VDP

interrupted by

sequences are

is included

providing

One must

another read or

not reentrant. A

in the Appendix.

Although many aspects of the VDP’s operation will be discussed in

this paper, the reader is encouraged to read the VDP data sheet to

gain a full understanding of its operational characteristics.

The VDP can interface directly to 4K or 16K dynamic or static

RAM’s. If VDP is initialized to interface to dynamic RAMs, it

- 32 -

automatically produces the RAS and CAS refresh signals. Any

display updates are done without any interruption of the refresh

sequence. Also, the refresh is interleaved with video RAM display

fetches. This interleaving yields a flicker free screen update at

60 hertz without missing any RAM refresh.

The VDP maps color (or black and white) information onto the

pixel information. The resultant signal is National Television

Standards Committee (NTSC) format and may be directly input to

monitor or a RF modulator for use with a standard television

receiver. The hardware consists of a transistor buffer that

isolates, amplifies, and provides impedance matching for directly

connecting the signal to a video monitor. In addition, two or more

VDP’s can be operated in parallel with their composite video

signals synchronized for multiple, 35 plane displays. This is one

way in which some of the hardware limitations of a single chip

system can be overcome. A specific example is the display of

multiple "sprites" on one scan line. A sprite, as defined by TI,

is an eight by eight pixel cell that can be moved by simply

changing the X and Y coordinate bytes associated with it. The VDP

has a limit of four sprites on any one scan line. If a fifth

sprite is moved onto that scan line, it will not be displayed and

the fifth sprite bit in the VDP status register will be set.

Multiple VDP’s would greatly reduce or eliminate this situation.

2.1.3.2. Video Memory Organization

The TMS9918 VDP has seven read/write registers and one read-

- 33 -

only status register. The registers are as follows:

RO,R1

R2

R3

R4

R5

R6

R7

R8

VDP control/option registers

Name table base address

Color table base address

Pattern generator base address

Sprite attribute table base address

Sprite pattern generator base address

Text mode color generator

VDP status

Registers RO, and R1 set up the VDP for video RAM space,

sprite size, and screen blanking. They are generally initialized

at the beginning of a program and are not often rewritten later.

In addition, one of four possible graphics modes is configured in

R1.

Registers 2, 3, and 4 are used in conjunction with each

to name, define, and color an object. According

specifications, R2 must contain an address in video RAM that

other

to VDP

is a

multiple of $400. R3 must contain an address in video RAM that is a

multiple of $40, and R4 must contain a multiple of $800. To

describe how an object is constructed and displayed we will use the

following example. In this example, it is desired to turn on one

pixel at some location on the screen.

initialized, but to do this, one must

mapping that the VDP uses.

First, R2 and R3 must be

know the pixel-to-screen

The screen is divided into 768 8x8 pixel pattern positions

- 34 -

starting with zero in the upper left hand corner (see Figure 2-7).

There are 32 pattern positions horizontally and 24 vertically

resulting in a display area of 32x8 by 24x8 or 256x192 pixels. The

image to be displayed in any one of these cells is stored in binary

form in the pattern generator table.

table in video RAM is in R4. Each group

pattern generator table is associated

The base address of this

of eight bytes in the

with two colors that are

This table

allowable

containing

byte 32 containing

stored in the pattern color table, whose base address is in R3.

is 32 bytes long, the first byte containing the two

colors for pattern positions 0-7, the second byte

the two colors for pattern positions 8-15, etc., with

the colors for pattern 248-255. It is

impossible therefore to use a single VDP to produce more than three

distinctly colored pixels within a group of eight bytes. This

color mapping limitation and one possible solution will be

discussed later in this thesis.

The pattern name table contains a numeric pointer value to a

pattern in the pattern generator table. As indicated in Figure 2-

8, the pattern generator table is 2048 bytes long and is logically

divided into eight bytes per pattern name yielding the 8 X 8 cell

described earlier. (Again, a possible limitation for direct bit-

mapped graphics exists here). For this example, suppose that R2 is

loaded with $0. This places the base of the pattern name table at

$0000 in video RAM ($0*$400=$0000).

-35-

Row 1

Row 2

Row 23

Row 24

8 by 8 pixel block

ACTIVE DI~LAYAREA ¯

I I
¯ ¯ 76~ 767

Backdrop area

256 pixels ~

192 pixels

Video Display Screen Mapping

Figure 2-7

-36-

N

BASE ADDRES~ 0

M

PATTE RN
NAME TABLE

:’ATTE R N =1

!
"

BASE
ADDRES~

PATI’E RN
GENERATOR TABLE

31

COLOR 1 J COLOR~

PATTE RN
CULOR TABLE

~.~ PA’YI’E RN POSITRON O
PATTERN POSITION |

r-----PATTERN
32 POSITIONS ~p~c;ITIt~

PATTERN

PATTERN PLANE

1
24 POSITIONS

F
~ATTE RN
POSITION
767

Pattern Name Table Register (R2) = O, VRAM Add~ = $000-$2FF

Pattern Generator Tbl. Regis. (R4) = $1, VRAM Add~ = $800-$FFF

Pattern Color Table Register (R3) = $C, VRAM Addro= $300-$31F

Video Display Processor Table Mapping Scheme

Fi gure 2-8

- 37 -

The pattern, generator register (R4) is loaded with $1, placing the

base address of the pattern generator table at $800 hex

($I*$800=$800). The color table (R3) is then loaded with $C which

places it’s base address at $300 ($C,40=$300). This produces the

video RAM map indicated in Figure 2-9.

Keep in mind that the goal is to turn on a single pixel in the

upper left hand position (cell). To do this, when multiplied

eight, location 0 in the pattern name table is loaded with a 0.

This 0 provides an index into the pattern generator table. The

pattern generator table location $800-$807 is loaded with the

desired pattern. If only one pixel is to be on, then all but one

bit of the eight byte cell will be

pattern and the position on the

desired color must still be defined.

zeros. At this point, the

screen have been defined; the

each

defines the color of the ones. There are sixteen possible

available, which can be represented as shown in Figure 2-10.

is another limitation revealed here. In order to map all

The color block is composed of 32 bytes. The lower nibble of

byte defines the color of the zeros and the upper nibble

colors

There

of the

colors onto the screen, the pattern table should contain at least

768 bytes. To accomplish complete pattern plane mapping, each byte

in the color table would govern the color for eight cells. That is,

byte 0 in the color table colors pattern plane cells 0-7, byte 1

colors cells 8-15, etc., until byte 31 colors cells 760-767.

Therefore, to conclude this example, video RAM location $300 would

be loaded with 1F (all O’s are black, all l’s are white).

-38-

$0000

$ 2FF
$ 300
S 31F

$ 800

$ FFF
$1000

S3FFF

~ Pattern Name Table

~ Pattern Color Table

~ 00000000
00000010
00000000

--$800 00000000

~
Pattern Generator Table

Video RAM Map of Example

Figure 2-9

COLOR
HEX

0
1
2
3
4
5
6
7
8
9
A

,C
D
E
F

COLOR

TRAN S PAR ENT
BLACK
MEDIUM GREEN
LIGHT GREEN
DARK BLUE
LIGHT BLUE
DARK RED
CYAN
MEDIUM RED
LIGHT RED
DARK YELLOW
LIGHT YELLOW
DARK GREEN
MAGENTA
GRAY
WHITE
BLACK LEVEL
COLOR BURST

SYNC LEVEL
EXTERNAL VIDEO
LEVEL

LUMINANCE
|DC)

VALUE

0.00
0.00

.53

.67

.40

.53

.47

.67

.53

.67
.73
.80
.46
.53
.80

1.00
0.00
0.00

TMS9918A

-0.40

CHROMINANCE
(AC VALUEI

.53

.40

.60

.53

.47

.60

.60

.60

.47

.33

.47

.40

.40

Y

0.00
.53
.67
.40
.53
.47
.73
.53
.67
.73
.80
.47
33
.80

1.00
0.00
0.00

-.46
0.00
0.00

COLOR
DIFFERENCE

R -Y B -Y

.47 .47

.07 ,20

.17 .27
.4 1 o00
.43 .93
.83 .30

0.00 .70
.93 .27
.93 .27
.57 .07
.57 .17
.13 .23
.73 .67
.47 .47
.47 .47
.47 .47

47(28A| .1 (28A)
73(29A) .2(29h3

.47 .47

.47 .47
-.46 -.46

VDP Color Assingments

Figure 2-10

- 40 -

2.1.3.3. Limitations and Solutions

Several aspects of using the VDP were brought out in the above

example. Some are good, and some are not as favorable depending

upon what is to be accomplished.

that to fill the screen with

pattern must only be made once.

One good feature of the VDP is

one eight-by-eight pattern, the

All the entries in the pattern

name table would point to the single pattern. Two very important

points about the possible limitations of the VDP were brought to

light in the above discussion. If one considers the application of

the VDP in a totally bit mapped graphics machine, it can be seen

that the hardware does not easily accommodate this. The first

shortcoming is the length of the pattern generator table. If one

wishes to generate different patterns in each pattern position on

the screen, the length of the pattern generator table must be 768 x

8 or 6144 bytes long. However the patter,n generator table can be

only one third this size.

The second limitation is the size of the color table size. In

order to define the color of each 8 x 8 pattern plane cell

independently, the length of the color table must be 768 bytes. To

define the color of each pixel individually, the color table needs

to be 256x192/2 = 24.5K bytes. In actuality, any one of a number

of mapping techniques could be used to significantly reduce this

size. Regardless, these are two limitations that must be taken

into consideration.

- 41 -

2.1.3.3.1. Pattern Table Length Solutions

The approach used in this project

generator length problem consisted of

display. This solution uses the fact that

to solve the pattern

time slicing the video

although the pattern

generator table is only one third the actual length needed, by

simply changing the base address of the pattern generator table

base register (R4), a completely new set of patterns can

displayed. The register modification can easily be done in the

16.2 uS which is the sum of the times for horizontal retrace and

displaying the boarder on the VDP. To implement this solution, the

pattern name table is filled with 0 to 255, indicating 256

different patterns. Three pattern generator tables were then

created adjacent to each other so that register updates amounted to

nothing more than incrementing R4. The video memory map for the

current system implementation appears in Figure 2-11.

The time slicing was implemented by use of a timer and the

vertical sync pulse pin on the VDP. The vertical sync pin was

connected to the NMI line of the 6502. Whenever an interrupt from

the VDP occurred, the first timer value was loaded into the 6522

and the VDP pattern generator register was loaded with $1. This

pointed to video RAM locations $800 to $FFF. Whenever this timer

timed out, it generated an interrupt. The second value was loaded

in the timer for the second third of the display screen, and the

pattern generator register was updated. The next interrupt caused

by the timer would signal the processor to change the pattern

~UUUU

$ 400

$ 7FF
800

$ FFF
$1000

$]7FF
$1800

$1FFF
$2000--
~01F
$2040~
$205F
$2080--
$209F --

Pattern Name Table

Pattern Generator Table #1

Pattern Generator Table #2

Pattern.Generator Table #3

.Pattern Color Table #1

Pattern Color Table #2

Pattern Color Table #3

System Video RAM (VRAM) Map - Figure 2-11

- 43 -

generator table base register to point to the location of the last

third of the display screen. Notice that the timer would not have

to be reloaded because the next interrupt would originate from the

VDP, which is attached to the NMI line.

A very specific device polling order is required to make this

scheme work. First, all actions of the interrupt service routine

should be as short as possible. Second, the very first device

tested should be the timer. If the pattern generator table is not

changed immediately, picture jitter will occur, depending upon how

much service time is required. Actually, the maximum time to

update the register is 13.05 uS. To have the maximum time to

update this register, the update cycle must begin at the beginning

of the display of the right border and must be complete by the end

of the left border (see Figure 2-12). More time can be allotted

for changing the entire screen at the end of an old one by starting

the change after the last or 256th scan line of the active display

area. This time period is approximately 4.5 ms.

Another useful feature of this technique is that multiple

planes can be displayed. No matter how many different frames are

displayed, the refresh rate is still 60 hz. This fact can make the

movement of objects much easier: while the first plane is being

displayed, the second plane can be updated. This method, although

acceptable but somewhat restrictive with respect to the possible

directions of motion that can be displayed, is not advisable if

sprites (to be described later) are going to be used.

-44-

Left Blanking/Color Burst (8 pix)(I~)= 1.5~s

.Left Border (13 pix)(p~xe)=2.4~s

Hsync (26 pix)(p~-~xe)=4.85~s

Right Blanking (8 pix)(pix~e)=l.5,s~

Right Border (15 pix)(~)=2.Su~s~

Active horizontal display ~’~’:!~
(256 pix)(.19~s/pix)=47.6u,

Horizontal Scan Line Timing

Top Blanking (13 Lines)(63.6Ks/line)=O.82ms~

Top Border (27 Lines)(63.6~s/line)=l.74msI.

Active Vertical Display

(192 lines)(63.6us/line)= 12

Active Display

Total Display.

Bottom Border (24 lines)(63.6L~s/line)=1.52ms.

Bottom Blankinq (3 lines) (63.6~s/line) = O.19ms.
Vertical Svnc (3 lines)(63.6~s/line)= O.19ms.

Vertical Scan Line Timing

Figure 2-12

- 45 -

2.1.3.3.2. Color Table Limitations

The problem with the color table can now be addressed. Since

independently shaded pixels were not required, the limitation of

the pattern color table size was not addressed in the software

written to dat~. There are however, some compromises that may be

made to accommodate color. First of all, every pixel in a

predefined 8x8 pixel cell can have only one of two colors. No

"tricks" can be used to get around this. In addition, trying to

time slice color table pointers every eight pixels to get different

colors is impossible due to time constraints. The best possible

compromise is to allow the use of only two colors, referred to as

the foreground and background colors, throughout the entire screen.

If multiple, parallel VDP’s were used, the idea of color planes

could be utilized. Basically this would result in one plane

defined as green, one as red, and the other blue. In order to draw

a white line, all three planes would contain the line. A number of

colors, up to a maximum of eight, could be displayed according to

the rules of color mixing.

A point should be brought up here. After the software was

designed to accommodate the pattern generator table time slicing,

an improved version of the 9918 (9918A) was released. One of the

improvements was to provide a means of making the pattern generator

table 6144 bytes long. To deal with the capabilities of this new

version, the software could be modified, but the original time

slicing method should work with the new version also.

- 46 -

2.1.3.4. Sprites and Their Use

Sprites are 8x8 cells having a number of special attributes

that make them useful for animation. Sprites are defined in the

same basic manner as patterns are defined. There are two registers

that govern the area in video RAM where sprites are stored. The

sprite attribute table base address is stored in register five (R5)

and the sprite pattern generator base address is stored in register

six (R6) of the VDP (Figure 2-13). The effective video RAM address

of the sprite attribute table is obtained by multiplying the

contents of R5 by $80, (R5*$80=video RAM address), and the

effective video RAM address of the sprite pattern generator table

is obtained by multiplying R6 by $800, (R6*$800=video RAM address).

There is a maximum of 32 sprites allowed by the VDP.

2.1.3.4.1. Sprite Pattern Generation

Sprites are built in much the same manner as other patterns.

The sprite attribute table is composed of four bytes of information

per sprite (Figure 2-14a). Therefore, for 32 spritesr the

attribute table is $80 bytes long. The first byte is the screen Y

position in pixels, the second byte is the X screen position in

pixels,

the tag.

either

update of a sprite’s position is done at the end of each

display, thus preventing a sprite from being partially moved.

the third byte is the sprite name, and the fourth byte is

A sprite can be moved simply by changing the contents of

the X or Y position bytes in its attribute table. The

frame

-47-

VRAM

X

NAME

TAG

SPRITE
ATT RIBU’rE

TABLE

MAP

SPRITE
GE NE P.ATOI~

TABLE

,SPRITE

Sprite Mapping

Figure 2-13

-48-

BYTE

BiT
MSB LSB
0 1 2 3 4 5 6 7

VERTICAL POSITION

HORIZONTAL POSITION

NAME

EARLYi
CLOCI~

BIT
0 0 0 COLOR CODE

a) Sprite Attribute Block

S~_E MAG AREA RESOLUTION

0 0
1 0
0 1
1 1

8x8
16 x 16
16 x 16
32 x 3:2

single pixel
single pixel
2x2 p;xel$
2 x 2 pixel$

BYTESIPAT’I-E]:~323288 I

b) Sprite ;iagnif~cation Factors

Figure 2-14

- 49 -

The name byte in the sprite attribute table refers to the

sprite number. To obtain the actual video RAM location where the

sprite pattern is stored, the value of the name byte is multiplied

by four. The resulting index is then added to the base address of

the sprite generator table, to point at an eight byte array which

contains the actual sprite pattern definition. As in the other

types of pattern generation, asserted bits (1) define an "on" pixel

and unasserted (0) bits are "off"

The color of the sprite can be any

provided for by the VDP (Figure 2-10).

is the low nibble of the fourth byte of

attribute table. Sprites

color appear invisible.

one of the 16 colors

The color attribute field

the four block sprite

with the same color as the background

Sprites can also be magnified in one of three ways.

Basically, the magnification factor can result in a sprite size

quadrupling to 16 x 16 while still maintaining the one to one pixel

mapping, or the sprite size can increase by a factor of 16, to 32 x

32 pixels, in which case there will be a one bit to two pixel

mapping (Figure 2-14b). The magnification factor, which can be set

by the appropriate bits in control register one, can be very useful

for the generation of larger objects. No matter what magnification

factor is selected, the sprites maintain an ordered priority when

displayed. That is sprite number one has the highest priority,

followed in order of decreasing priority by sprite number’ two,

sprite number three, etc. This prioritization is important because

an overlap condition may occur in the process of moving sprites

- 50 -

around. If sprite one overlaps sprite three, the overlapped

portion of sprite three will be covered by sprite one and will

become invisible. If sprite three should overlap sprite ten, the

overlapped portion of sprite ten will be covered by sprite three.

In the current configuration

cursor. The remaining unused

numbers $FF.

of the system, sprite zero is the

sprites, are given by default,

2.1.3.4.2. Sprite Motion

use

constructed which would present to the "operating

allotment of sprites available to construct an object.

order to obtain the maximum benefit from the

Several aspects of using sprites can be explored. First, to

sprites for object animation, a sprite usage table could be

system" an

Second, in

sprite, a

magnification factor of 16x16 or 32x32 would have to be selected.

Third, in order to compose larger objects than, say 16x16, several

sprites could be concatenated to act as one large object. Since a

sprite is moved by updating its X and Y location bytes, a composite

object would have to be moved by changing all the X and Y bytes of

the sprites of which it was composed. However, this would have no

noticeable effect on the observed object motion.

In making composite objects from sprites, it is generally a

good idea to use sprites in succession to avoid mixing the display

priority of the composite objects. To illustrate this, suppose a

square that was composed of sprites 2, 3, 4, and 10 ran over a

rectangle composed of sprites 8,9,11,12,13, and 14. Depending upon

- 51 -

where the two composite objects overlapped, a part of the re.ctangle

could show through part of the square, when it was actually desired

to have the entire square at a higher priority than the rectangle.

Consecutive groups of ordered sprites used to produce a composite

picture would reduce the partial "show through" problem.

The preceding paragraphs reveal some attributes of sprites

that must be considered when using them to compose large object.

To effectively structure a large object some restrictions and prior

information about the object to be constructed would have to be in

effect. For example, if a triangle were to be constructed, a

triangle command keyword would have to exist rather than requiring

the user to perform a piecewise construction of a triangle. Also,

since the triangle is being constructed with the intent of having

it be able to be moved, a special animation attribute would have to

be added to the command line. This way the object generation

algorithm would know to use the sprite "free list", and construct

the triangle of consecutive free sprites.

Depending upon the application, some of these limitations may

be difficult to live with. A possible solution is to add on

additional parallel VDP’s. If another two were added, a total of

96 sprites could be generated. Since the composite video of the

three VDP’s would be mixed, the 32 sprites of VDPI would have the

same priority as those of VDP2 and VDP3. As a result of this

paralleling, the software for object construction, sprite free list

management and sprite movement would be somewhat more complicated,

but more flexible.

- 52 -

2.1.3.5. Text Information

advantages. First,

available to the user.

height, or slanting

The VDP has a text display mode available to the user. When

in this mode, the use of sprites is not permitted. In order to

display alphanumeric characters~ it is suggested that a character

font be established in system EPROM to directly load the characters

into the pattern display area. This method has a few other

programmable character fonts could be made

Second, character attributes such as double

could be implemented in the display string

command. Currently, no text display is implemented on the system.

2.1.3.6. Object Mapping Algorithm

2.1.3.6.1. Point Mapping Into Video RAM

As can be seen by the previous discussion on the architecture

of the VDP, it is not exactly a bit mapped graphics engine. In

order to generate objects in the three pattern generator tables, a

fast and efficient mapping algorithm to map the X,Y coordinates to

a video RAM address had to be developed. Each time the object

generation algorithm derived the X and Y coordinates of a point, it

would immediately call a subroutine called MAP. The function of

MAP is to map the XY coordinate into the video RAM pattern

generator table, one pixel at a time. During the development phase

for this software, a temporary table was created into which the

generated XY coordinate pairs were stored, after which they were

"dumped" to the mapping routine. The advantage of this approach

was that a faulty object generation routine could be debugged by

- 53 -

examining the coordinates it generated. The drawback of this

method was that extra overhead was placed on the system in terms of

subroutine jumps and returns. Two additional subroutines had to be

written, one to put values into the table, and a second to remove

them from the table. In effect,

subroutine overhead and increased the

table had to be created in RAM

this doubled the mapping

processing time. Also, a

to hold the generated points.

Depending on the complexity of the line to be drawn, a large number

(>800) of points could be generated. This would translate directly

into the same number of bytes that would comprise the table. Since

memory is at a premium in small systems the creation of the table

to temporarily hold the X,Y points for any purpose other than

debugging would be a waste of RAM.

2.1.3.6.2. Mapping Algorithm Implementation

The problem of how to set the correct display bit on or off

has at least two known solutions, but the one described here is

more efficient. The screen can be divided into two numbers of eight

bit by eight bit squares as shown in Figure 2-15. For the purposes

of discussion, the effective base address of video RAM is $800, but

this bit mapping algorithm is independent of what base address is

used. The screen is decomposed into twenty-four rows by thirty-two

columns. With each row, pixel addresses range from 0-255 plus the

video RAM base address. The following algorithm is used:

Axis

Row 0

Row I

Row 22

Row 23

Y Axis

904

,i O0

$"’808

$ 8oF
$ 908

$ 90F

$1E08

- $1EOF
: $IF08

~ACTIVE DISPLAY AREA

$ 8FO
!

I 8F7

~ ~F7

$1FFO

$1FF7

Video RAM to Display Screen Mapping

- 55 -

a) Locate the row (Y coordinate) by using the specified
coordinate.

b) Locate the column (X value) by using the specified
coordinate.

c) Locate the byte within the cell by using the
significant bits of the specified Y coordinate.

three least

d) Locate the bit within the byte by using
significant bits of the specified X coordinate.

the last three

e) Get a bit mask of the bit to be turned on or off by using the
last three significant bits of the specified X coordinate as an
index into a lookup table. Example: last three bits of X are
011, then the mask is 00000100.

The assembly language routine works in the following manner

(see Figure 2-16): First the Y row address is obtained by dividing

the Y coordinate by eight and storing the result in VADH. The

three least significant bits of the X coordinate are masked off,

yielding the X location of the eight by eight cell on the screen.

This result is added to the three least significant bits of the Y

coordinate. This intermediate result is added to the base value of

video RAM resulting in the actual address in the video RAM to be

modified. The bit to be changed is derived by a table lookup using

the three least significant bits of the X coordinate as an index

into a "one of eight" table. This value, along with the fetched

value from video RAM, are EXOR’ed together and then re-written to

video RAM. The execution of this routine takes approximately 70

micro seconds.

The routine turns bits on or off by ex-oring the current: value

of video RAM with a mask. If the bit to be turned on is already

on, that bit is erased. For example, if a circle command had been

issued previously and a circle was displayed on the screen, if an

- 56 -

identical circle command were reissued, the circle would disappear.

If one object intersects another object, the point of intersection

will be seen as an "off" pixel.

The reasons for this choice of method of pixel illumination

were to maintain consistency and to ease implementation of future

enhancements. The command to draw or erase an object is the same,

therefore no special "undraw" commands would have to be devised and

remembered by the user. In addition, an "undo" key could be

implemented that would erase the previous command. Obviously, the

command buffer would have to be multiply buffered to do this, but

this concept has additional benefits which will be described

further in the Software Design section of this paper.

-57-

Subroutine HA.. ° (MAP> tai:es the corresponding X,Y coordinate pairs and
maps them into the VD~ VR/~M. Se~ the d~cument~tion ~or h~,~ the
VRAM is divided ~or v~rious displeg modes.

Called bg r~utines~ VECDWg
C~ils routines: ~ETTBL

Registers modified: A, X
Registers not ~odigied: Y
V~ri~bles possiblg ~SSected: XPIX, YPIX, TEMRP, PBASE, VADL, VADH
Error codes possible <HEX)"

pha

pha,
tsx
lda ~I05, x
isra
Isra
Isra
sta vadh
Ida $I06, x
an~
st~ tamp p
Idm $I05, x
and. #~07
ora tempp

ado phase
sta vad I
-Ida vadh
ado pbase+l
sta vadh
Ida SlO6,
and

Ida bittbl,
sta tamp
jsr rdv~am
eo~ tamp
t~x

js~ ~vram

tax
pla

; Save the A and X registers.

¯ Else load the Y coordinate and start to dec
, Find the Y’th ro~ (0-24) bg Y/8.

, And store it in the high address bgte.
, ~et the X value and mask ors the lower 3 b~
, This gives us the x’th column position.
, Squirrel that ~g ~or the time being.
, get the g va~ue
, The lower three bits tell us how ~r we
¯ from the b~se. Add it to the index c.~Ic.a~
, Now add it to the base (See documentation)
, To get the Io~ bgte o~ the absolute VRAM

Store it in the WVR~M routine Io~ bgte adds
~ ~et the high bgte to tr~nsgorm it,
~ Add high bgte + Pattern ~en Base(high)+c
~ Store it in the high bgte of WVRAM.
~ get the x position again’for the actual bi~

, Map 0-7 into one OS eight bits to be turne(
, Store the bit to be turned on ~or second
¯ get the present bit pattern
, EOR in the ne~ bits.
, Stick ~t into X T-eg ~or
. and go ~rite (turn on) the bit:

, Retrieve and restore the X and A rags.
¯ \

bge

Figure 2-16

- 59-

Software Design

3.1. Overview

During the design phase of this project the need for a large

number of system level and graphics level software primitives was

foreseen as a necessary part of a fully functional graphics system.

However, due to time constraints the scope of the project could not

encompass all the features that one would desire. The ideas

presented in this section, although not all implemented, were taken

into consideration during the design and implementation. The

software was written in such a manner so that future work would

mesh more easily with the existing code. (Throughtout the Software

Design Section of this thesis, detailed operation and

implementation of the software design will be discussed from time

to time. The purpose for this is two fold. First, it offers

considerable insight to the interested reader about the structure

and software concepts (i.e. subroutine/coroutines, parameter

passing, etc.) used during the implementation phase of the

interpreter. Second, if future modifications and enhancements are

made to the software, enough information is avaliable to the user

to make this task less difficult. This document, in conjunction

with the commented source code, should make the task of software

enhancements more manageable.)

The design of the software used the method of top-down design.

The top-down decomposition took the form of starting with a

specific area or task, and subdivided it into a number of smaller

tasks that when properly assembled, would porduce the desired

- 60 -

result. The result of this methodology used 6502 assembly code to

implement the tasks and subtasks. An example of a small, low level

task is checking the range of a numerical value that is passed to

the subroutine. An example of a larger task is lexical scanning.

The manner inwhich new commands may be added is

by this design approach. To add additional

programmer would determine the tokens required,

made simpler

commands, the

structure the

parser driver subroutine to get the tokens in the proper sequence,

and then implement the algorithm to utilize the acquired tokens.

Throughout the subsequent discussion of the software

development, the reader may find it helpful to refer to the

subroutine flow diagrams (Figure 3-5, 3-9, 3-10a, 3-10b), and the

actual assembly code listing in the Appendix, as many specific

references to routine variables and their purpose will be made.

The system software can be divided into two functional areas:

system and graphics levels. The system level software contains

such functions as: 1) Microcomputer monitor/debugger, 2) Graphic

hardware monitor, 3) Download programs, 4) Terminal interface,

Editor, 6)Assembler, and 7) File system. The graphics level

software is composed of: I) Lexical Scanning, 2) Command

interpretation, 3) Display list execution, 4) Error handling, and

5) Drivers for the video display user interface hardware (ie. VDP,

joystick/trackball, etc.). A description of the concepts and

design of the software for these two functional areas will follow.

- 61 -

3.2. System Concepts

One of the design goals of the graphics system was to make it

a stand alone system as much as possible. Many low-cost graphics

systems function in a mode where they must be connected to a host

computer system on which the user develops and enters a display

file which is then downloaded and executed by the graphics machine.

This works well, but incurs the overhead of a host machine and

limited interactive capabilities. The premise behind this project

was to identify what a user would need in a stand alone system and

include these capabilities in

software functions described

implemented in this project and

specified.

the design. Of the the system

above, items one through four were

the remainder were conceptually

3.2.1. Microcomputer Monitor/Debugger

The microcomputer monitor/debugger can be used for a number of

applications. Probably the most prominent ones are debugging

development software for the system and creating special assembly

language routines to create and manipulate graphics objects. To

expedite the development process, an existing monitor source was

used and modified to work on this machine. A short synopsis of the

monitor commands is presented in Figure 3-1, with a more

description of the monitor, its usage

Appendix. Briefly, the monitor can

microcomputer memory/register locations,

detailed

and operation i~n the

examine and modify

single-step through an

assembly language program, and set, cancel, and resume

Command Explanation

aaaaO

LF

CR

ddM

G

<sp>A

<sp>X

<sp>Y

<sp>S

<sp>P

b<sp>B aaaa

Open for examination the memory location at address
Saaaa. The next prompt will show address $aaaa and
it’s contents.

Open for examination the memory location whose
address is one less than the currently open
location. Note: LF stands for the line feed key on
the terminal.

Open for examination the memory location whose
address is one more than the currently open
location. Note: CR stands for the carriage return
key on the terminal.

Place the data value $dd into
memory location.

the currently open

Begin execution of a program at the currently
memory location.

open

Open the memory location in page zero where the
copy of the 6502 A register is stored. This value
may be modified at any time using the M command.

Open the memory location in page zero where the
copy of the 6502 X register is stored. Th~s value
may be modified at any time using the M command.

Open the memory location in page zero where the
copy of the 6502 Y register is stored. This value
may be modified at any time using the M command.

Open the memory location in page zero where the
copy of the 6502 stack pointer register is stored.
This value may be modified using the M command.

Open the memory location in page zero
copy of the 6502 processor status
stored. This value may changed at any
the M command.

where the
register is
time using

Activate breakpoint b at address $aaaa.

Microcomputer Monitor/Debugger Commands

Figure 3-1

from up to seven breakpoints.

- 63 -

3.2.2. Microcomputer Monitor Graphic Extention

As depicted earlier in Figures 1-4 and 2-6, the VDP contains

16K of video RAM that is not a part of the microprocessor’s address

space. The modification of video RAM requires interaction with the

VDP. It is often necessary to examine/modify video RAM when

debugging various video display programs. An extended command set

was created to enable a user of the microprocessor’s monitor to do

this. A list of these commands appears in Figure 3-2, with a

detailed description of their usage and operation in the Appendix.

Basically, these extensions allow a user to read and to modify

video RAM locations.

3.2.3. Download Program

To take advantage of the use of a host machine, a download

program was written and used extensively during the software

development. The program accepts ASCII information at 9600 baud

via one of the two serial ports on the microcomputer board. During

software development, assembled 6502 code was downloaded into the

graphics system to be run

accepts information in ASCII

information in RAM according

directives. The program checks

and debugged. The download program

hex-space format, and stores the

to the assembler start address

for format errors, such as an

invalid character, computes and verifies the checksum, and prompts

the user when done. The appropriate error messages are output in

- 64 -

Command Explanation

aaaaO

LF

CR

ddM

<sp>S

Open for examination the video display memory
location at address $aaaa. The next prompt will

show address $aaaa and it’s contents.

Open for examination the memory location whose
address is one less than the currently open
location. Note: LF stands for the line feed key on
the terminal.

Open for examination the memory location
address is one more than the currently
location. Note: CR stands for the carriage
key on the terminal.

whose
open

return

Place the data value Sdd into
video memory location.

the currently open

Displays the contents of the Video
Processor’s (VDP) status register (R8).

Display

Video Display Processor Monitor Commands

Figure 3-2

- 65 -

the event of an error. A description of the ASCII hex-space

format, (interfacing to a Data I/O system 19 PROM programmer), and

the operating system (Unix V7 UCB) it functioned under are provided

in the Appendix.

3.2.4. Terminal Interfacing

During the

software, it became

program would result

example, a dumb terminal

character by displaying a

initial development of the terminal interface

apparent that implementation of a "dumb"

in an unacceptable user interface. (For

interface would respond to a RUBOUT

"/" followed by the character being

deleted instead of backspacing over the character and displaying a

space.) The interface device was originally intended to be

terminal, through which the programmer could enter graphics

primitive commands, which, in turn would either be displayed on the

monitor or would be incorporated into a file. As indicated in

Section 2.3, the addition of a joystick/trackball, and redefinition

of the "h"’, "j", "k", and "l" keys for cursor movement would be

desirable or additional features.

upon the software, a modular

terminal handler was employed.

In order to be able to build

and expandable approach to the

An overview of the interface

hardware/software is shown in Figures 3-3 and 3-4.

Figure 3-3 depicts the general flow of information to and from

the terminal and into the input and output queues. Basically, the

incoming character is received in the ACIA’s receiver buffer. This

triggers an interrupt to the processor, which determines through

-66-

CHARACTER
ACIA

RECEIVE
BUFFER

^C
RESTART

~ ERRHND

DEL OR

CHARACTER

N

TAB

Y

DEL/BS
LOGIC

ECHO
LOGIC

INPUT
QUEUE

256
BYTES

CHARACTERS TO

LEXICAL BUFFE

CHARACTER
OUT ACIA

TRANSMIT
BUFFER

WHITE
SPACE

COUNTER

OUTPUT
QUEUE
HANDLER

PRINT
QUEUE

HANDLER

SYSTEM
MESSAGE
TABLE

OUTPUT
QUEUE

256
BYTES

PRINT
QUEUE

256
BYTES

CHARACTER HANDLING OVERVIEW

Figure 3-3

- 67 -

the use of a prioritized check of interrupting devices, that the

ACIA needs attention. The character is then read from the ACIA

receiver buffer and is passed to a "filter" routine which performs

several checks. First, if the character is a "C, the terminal

monitor is restarted. Next if the character has a special meaning,

such as delete or backspace, appropriate actions are performed on

the contents of the input and output queues, and the queue pointers

are adjusted accordingly. Otherwise, if the character is a "normal"

printing character, it is inserted into the 256 byte circular input

queue (INQUE), and subroutine ECHO is then called to echo the

character by inserting it into the output or echo (OUTQ) queue.

The transmission of characters is also performed on an interrupt

basis. The interpretation of characters stored in INQUE is

discussed in the Section 4, "Language Design", of this document.

3.2.4.1. Queues and Queues Handling

As can be seen in Figure 3-4, the system has three queues.

The input queue is for incoming characters, the output queue is for

out going (echoed) characters, and the print queue is for

displaying system messages. Because the system has extensive error

reporting capability, the possibility of intermixed messages

exists. With the two queues, this problem is reduced. Currently,

the error messages are short (i.e. numeric), so they are handled

via the output queue. Future enhancements would call for the error

messages to be stored in ROM as English-style messages, with the

error numbers acting as indices to the appropriate messages. The

messages would then be transferred in a block move to the print

CHARACTERS
FROM FILTER

PROGRAM.

PUTINQ ~
INPUT
QUEUE

256
BYTES ~GETINQ ~

CHARACTERS TI
LEXICAL BUFF

TO ACIA
TRANSMIT
BUFFER

GETOTQ ~

GETPTQ ~

OUTPUT
QUEUE

256
BYTES

PRINT
QUEUE

256
BYTES

~ PUTPTQ >

CHARACTERS
FROM SYSTEM

CHARACTERS FR~
ERROR HANDLER/
MESSAGE BUFFER

SYSTEM QUEUES

Figure 3-4

- 69 -

queue, and output accordingly. Since both queues transmit to the

same ACIA, it is possible that messages and echoed characters could

become interleaved. The approach taken here is that it is

important to let the user know what is wrong, rather than correctly

echo the line s/he is currently working on. If the system

generates an error message, once the error message(s) is loaded

into the print queue, that queue "hogs" the path to the ACIA. A

return to normal operation occurs when error message transmission

is completed. It is believed that the queue sizes are large enough

to accommodate any terminal I/O condition that may occur. Since

each queue is 256 bytes, which is approximately three 80 character

lines, this would convey enough information. The error message

look-up table has not been designed but the queue contention

software has been incorporated into this version of the software.

Another design technique of interest involves the interactions

between the queues. Since there are two queues, one of four

conditions may exist:

Input Queue Output Queue

1. Not full Not full

2. Not full Full

3. Full Not full

4. Full Full

If an ACIA receiver interrupt occurs and condition 1 exists,

the character is echoed in the normal way. If either condition 2

or 4 exists, the character is ignored. If case 3 exists, a "bell"

- 70 -

character is placed in the output queue to signify to the user that

the input queue is full. Since the software must be able to echo

two or more characters as a result of a single input character, as

might occur due to the system’s support of horizontal tabs,

backspace/delete, and future editing features, the variables INQFRE

and OTQFRE are checked to insure that enough space exists to echo

the correct character string. If enough space does not exist, the

command is ignored and a bell character is placed in the output

queue. Under normal conditions, it is very unlikely that these

error conditions will occur.

Another design feature incorporated into the system software

that deals with the queues, is that of queue pointer images. A

problem associated with interrupt driven systems, that makes queue

handling more difficult, is the randomness of the input and output

interrupts. It is conceivable that one software routine may be

trying to put something into the queue while another is trying to

take a character out. To alleviate the problem of the queue head

and tail pointer variables both being accessed during a critical

window, copies of the head and tail pointers are made at the

beginning of a queue I/O sequence. The copies are manipulated

during the queue operation and then the real parameters are updated

at the end of the queue access routines.

3.2.4.2. Software Implementation

To illustrate the subroutine flow of the

software, the reader is referred to Figure 3-5.

terminal handling

This figure,

-71-

TERMINAL HANDLER SUBROUTINE
FLOW DIAGRAM

Figure 3-5

- 72 -

in conjunction with the software listings, provides a

presentation of the terminal interface logic. The

normally in a wait loop. All of the hardware devices are

detailed

system is

attached

to the IRQ line of the processor as described in the Hardware

Design section, and are initialized to act as interrupting devices.

Suppose that an interrupt occurs and it is the terminal ACIA. Upon

the acknowledgement of an interrupt, the interrupt service routine

(IRQVEC) is entered. Preliminary checks are made of the higher

priority devices such as the VDP and VIA. Interrupts from these

devices are of primary importance because they deal with the time

slicing of the display frame. This display technique is described

in more detail in Section 2.1.3.3.1.

Subsequently the receiver interrupts are

terminal ACIA did not cause the interrupt,

declared spurious and the interrupt service

checked. If the

the interrupt is

routine returns.

Additional interrupt checking can be inserted in the IRQVEC routine

as required by the addition of new devices. However, it is

important to maintain relative and absolute priorities of the VDP

and timer interrupt checking when additions are made. The status

of the receiver buffer is then checked, and if it is full,

provisions are made for handling this error condition. If the

transmitter was the source ofthe interrupt, subroutines GETOTQ

and/or GETPTQ are entered to empty the echo or print queues (path

12 or 13).

Incoming characters are handled in the following manner.

First, the state of the output queue is checked in subroutine

- 73 -

CKOUTQ. If it is full, the character is

check is made, in subroutine CKDEL,

BACKSPACE character and if this check is

"winds back" the input queue. If the character to be deleted is

anything but a horizontal tab, the routine passes a backspace,

space, backspace to subroutine OUTCHR, which places these three

characters in the output queue and enables transmitter interrupts

(path 1,2,3,5,7).

ignored. Otherwise, a

for either a DELETE or

true, subroutine DECINQ

If the character to be deleted is a horizontal tab, the

queue

current

sequence

is

input

backed up to the last carriage return, and the entire

line is redisplayed minus the horizontal tab. This

of events is handled by the DECINQ, ECHO, and OUTCHR

subroutines (path 1,2,3,5,6,8,10 or path 1,2,3,5,6,9 depending on

what characters the line to be rewritten contains). Subroutine

DECINQ "removes" the entire line from the input queue by backing up

the tail pointer to the last carriage return. Then, the characters

are output in the normal way through subroutines ECHO and OUTCHR.

Subroutine ECHO handles normal printable characters between $20 and

$7E. Subroutine SPECIL handles other special characters such as a

bell, horizontal tab, and carriage return/line feed that may

already be in the line to be re-displayed.

Handling of "normal" characters, ranging from a space ($20)

a titda (’) ($7E), is illustrated in Figure (path 1,2,3,4,9,11).

The character is received, the queue status is checked by

subroutines CKOUTQ and CKINQ, and if events follow the queue logic

outlined earlier, the character is echoed in subroutine ECHO,

- 74 -

handled appropriately if it is determined to

subroutine SPECIL, and output by subroutine OUTCHR

character handling is done in path 1,2,3,4,8,10,11).

be unique by

(the special

The input, output and print queues are the connection between

the raw character handling and the command interpretation.

Subroutines CKPTQ, GETINQ, PUTOTQ and PUTPTQ are invoked by the

lexical scanning layer of the software. Briefly, subroutine GETINQ

retrieves a character from the input queue, subroutine PUTOTQ puts

a character into the output queue, subroutine CKPTQ checks the

status of the print queue for full or not full, and PUTPTQ places a

character into the print queue. The interaction of these routines

with the overall system will be described later.

3.2.5. Lexical Scanning and Parsing

3.2.5.1. Overview

The process of desiging a command interpreter is a subset of

the process of designing a compiler. The block diagram of a

compiler’s components, or phases is shown in Figure 3-6. (A phase

is a logically cohesive collection of programs the produce an

output compatible with the next phase.) The design of the graphics

interpreter embodied many of the phases shown in the figure, but

the development of a complete graphics compiler was beyond the

scope of this project. For the implementation of the animation

language, a software design approach that incorporated many

compiler phases was determined to be the best way to proceed. This

methodology had many benefits, of which the most important ones

-75-

Source Program

Lexical
analysis

Syntax
analysis

Intermediate

management generation

Code
optimization

Code
generation

handling

Target Program

Phases of a Compiler

Figure 3-6

- 76 -

were a well defined program flow for the interpreter and ~a good

foundation of subroutines that could be totally incorporated in the

compiler development phase.

The design of the interpreter software was subdivided to

include the following functions: lexical analysis, syntax analysis,

semantic analysis, table management, and error handling. Although

the scope of this project did not warrant the incorporation of all

of the remaining phases of a compiler design, there is reason to

discuss these areas. The incorporation of various data structures,

logical assignments, and the scope of variables must be considered

for future versions of the language.

3.2.5.2. Tokens

The lexical analyzer is the interface between

source program and the interpreted displayed action.

analyzer reads the source program one character at

the graphics

The lexical

a time and

determines when a token, or a sequence of characters that can be

treated as a single logical entity, is found. There are two kinds

of tokens: specific words such as VEC or IF, and classes of

strings such as constants and labels.

strings such as VEC and IF can not have a

Therefore, a token can be thought of as having two

token type, and (a possibly NIL) token value.

The difference is that

numeric value.

attributes: a

In the design of

this graphics language, the following types of tokens were allowed:

Token CLass

- 77 -

Token Type

Keywords 01

Identifiers 02

Constants 03

Strings 04

Operators 05

Punctuation 06

other 07

The value of the token type associated with each token class is

used in the actual assembly code to encode what class of token was

desired or encountered. For example, if a keyword is desired, a $01

is passed to the appropriate routine. In the current version of

the system, strings, operators, and punctuation are not used in the

language. The subroutines that deal with these tokens were written

to permit the language to make use of them at a later date with

minimal difficulty.

3.2.5.3. Transition Diagrams

A relatively simple

classes in the design

transition .diagram. In

but robust way of determining token

of a lexical analyzer is by the use of a

transition diagram, the boxes of a

flowchart are drawn as circles and are called states. The states

are connected by arrows called edges. The labels on the various

edges leaving a state indicate the input characters that can appear

after that state. These diagrams are a relatively compact way of

- 78 -

indicating what types of characters can comprise various tokens.

Figure 3-7 shows a transition diagram for an identifier,

defined to be a letter followed by any number of letters or digits.

The starting state of the transition diagram is state zero, the

edge of which indicates that the first input character must be a

letter. If this is the case, we enter state one and look at the

next input character. If that is a letter or a digit, we re-enter

state one and look at the input character after that. This process

continues until a specified delimiter is reached. According to the

language syntax and token class, this could be a punctuation mark

such as a comma or semicolon, or a space. Upon reaching the

delimiter, state two is entered. State two could be a return to a

driver program set up in either a subroutine or coroutine form of

execution.

3.2.5.4. Command Lines

Graphic languages are generally composed of command lines.

The primitives that enable the user to draw a circle with relative

ease can be of the form:

keyword<O:>attribute<O:>attribute<O:> attribute<O:>

NOTE: <0:> denotes a delimiter

where the keyword can be, for example, CIRCLE, and the attributes

can be the radius, X,Y position of the center, and perhaps the

-79-

start~~

letter or digit

letter _~ delimiter

Transition diagram for identifier

Figure 3-7

- 80 -

color. Keywords, such as CIRCLE, that cannot be used as a label

identifier, are

the development

identified in

keyword can direct the gathering of token classes

according to the syntax and grammer of the language.

or

termed reserved words. This strategy is used in

of the language so that once this word is

the system symbol table, the code for handling that

(parsing)

3.2.5.5. Regular Expressions

The type of lexical analysis and the use of reserved words can

be related to other concepts and design philosophies of languages,

specifically, regular expressions and finite automata. Consider

the above form of the command line to consist of a string of

characters, represented in a binary form, which can be considered a

binary alphabet consisting of ones and zeros. These strings can

have properties of sets such as concatenation, union, and

concatenation of closure. The way in which these operations are

put together in a string defines the language. In the example of

the identifier transition diagram given earlier, a regular

expression notation would look like:

identifier = letter(letterldigit)*

The vertical bar means "or," that is, union, the parentheses are

used to group subexpressions, and the asterisk is the closure

operator, meaning "zero or more instances." It is from a

description of this nature that a program can be constructed to

"look for" various tokens. The grammar of a language is formed by

a set of production rules for generating the words of a language.

- 81 -

A regular expression is basically the formal

language acceptable by a finite automata.

language is built up from atomic languages by the

operations (i.e. concatenation, union, and

closure).

The tokens discussed above

regular expressions.

description of a

It tells how the

use of regular

concatenation of

are described by the following

reserved word = barclcirlclrlcurposlcursflcursoldspst~earclintg

Imarclmovelpaintlrevidlsetbdclsetbgclsetfclvec

identifier = letter(letterldigit)*

constant = (digit)*

string = (letterldigit)*

relative operator = <I<=I>I>=I<>I>I>=

punctuation = .I;l:l}l{

operator : +1-1"1/1"*1

These expressions were used to develop the lexical analyzer’. It

should be pointed out that programs exist to build lexical

analyzers. One such program is LEX. Basically, LEX takes its input

in the form of regular expressions and produces a lexical analysis

program. Although LEX is a common tool on UNIX operating systems,

the output of LEX is in "C’ and the author did not have access to a

"C’ to 6502 cross assembler. However, essentially the same

- 82 -

methodology that is used by LEX was used to generate the assembly

language code for the interpreter.

3.2.5.6. Context-Free Grammar

As pointed out above, regular expressions are capable of

describing the syntax of tokens. Any syntactic construct that can

be described by a regular expression can also be described by a

context-free grammar. A context-free language is a language that

may be described syntactically by direct unconditional substitution

and concatenation of symbols. Moreover, the substitution of a

phrase for a symbol is independent of the symbol. Both the

language and the grammar are then called called context-free.

There were several reasons why regular expressions were used

instead of a context-free grammar. First, the lexical rules are

usually simpler and there was no need for a notion as powerful as

context-free grammar. The fact that the graphics language was more

of a command language rather than a programming language supported

this decision. Second, it is easier to construct efficient

recognizers from regular expressions than from context-free

grammars. Third, separating the syntactic structure of a language

into lexical and non-lexical parts provides a convenient way of

modularizing the front end of a compiler/interpreter into

manageable-sized components.

There are no firm guidelines as to what to put into the

lexical rules, as opposed to the syntactic rules. Regular

expressions are most useful for describing the structure of lexical

- 83 -

constructs such as identifiers, constants, and keywords, etc,.

Context-free grammars, on the other hand, are most useful in

describing nested structures such a balanced parentheses and

matching "begin-ends". These nested structures cannot be described

by regular expressions. This does not imply that multiple loops

cannot be implemented. In the case of "begin-ends", variable scope

can change, which would alter the contents of these variables.

This in turn changes the construction of the lexical analyzer and

makes it more difficult to implement.

3.2.5.7. LR Parsing

In the design of the graphics interpreter, the model of a LR

parser was used. A LR parser scans the input line from left to

right and constructs a rightmost derivation in

parsing mechanism was chosen for two reasons.

more general than operator precedence or any

reduce techniques. Second, LR parsers can detect syntactic errors

as soon as it is possible to do so on a left-to-right scan of the

input line. This allowed the

syntactic and semantic errors at

interpretation of a command line.

be more throughly discussed in Section 3.2.6

Implementation.

reverse. The LR

First, LR parsing is

other common shift-

design of the parser to detect

a specific level during the

The implementation details will

¯ Assembly Language

The LR parser is composed of the input string, the output

stack, the driver routine and the parse table (Figure 3-8). The

input is read from left-to-right one symbol at a time. These

-84-

[a~l’"[a,[’..[a,,[S [Input

LR Parser Block Diagram

Figure 3-8

- 85 -

symbols are then placed in a stack. In this implementation of the

interpreter, the symbols are placed in a parameter area of

variables. The ordering of the symbol "fetches" determines the

order inwhich they are placed in the parameter area.

Upon successful scanning of the input line and building of the

parameter area, the variables are checked for correct numeric range

and interaction with other parameters. Successful completion of

this level results in advancing to the specific section of code

that executes the specified command. The implementation details of

this mechanism are discussed below.

3.2.6. Assembly Language Implementation

3.2.6.1. Command Line Retrevial

With the methodology for the design of the lexical analyzer

discussed, the actual assembly language routine functions and

interaction can be described. The reader is referred to Figure 3-9

for the lexical subroutine logic flow. For purposes of discussion,

we shall assume that the interrupt driven terminal interface has

been putting characters into the input queue. When a character is

inserted in the input queue, it is checked to see if it is a

carriage return. If it is, a variable called CRGCTR is incremented

and the interrupt service

serves as a line counter

lexical scanning process.

routine exits. The variable CRGCTR

and it is used as a flag to start the

When the processor is idle, it is

executing a wait loop checking to see if CRGCTR is greater than

zero. When this condition occurs, a complete line that is

ERRHND ~

CONTINUED ON
NEXT PAGE

--" 18

RETURN FROM
COMMAND LEVEI

BEGVEC

9

6

RESET

5

JUMP INDIRECT
TO COMMAND

LEVEL

COMMAND LEVEL

CONTINUED ON
NEXT PAGE

LEXlCAL ANALYZER SUBROUTINE
FLOW DIAGRAM
FIGURE 3-9

-87-

GCHAR ENDTOK

41

45

PSHERR

ERRHND ~

~-POPERR ~ ~’" "/’ ~ ~~ CRLF- DECOUT

FLOW DIAGRAM
FIGURE3-9 CONTINUED

- 87 -

terminated by a carriage return is copied, by the subroutine

GETLIN, into a lexical scanning buffer called LEXBUF. The

subroutine GETLIN also decrements the variable CRGCTR and checks

for lexical buffer overflows. Subroutine GETLIN in turn, calls

subroutine GETINQ which retrieves a character from the input queue

and adjusts the queue pointers accordingly (path 2,11).

If the processor were interpreting a graphics primitive

command when CRGCTR was incremented, nothing would happen. The

processor would simply finish executing the current command line,

return to the wait loop, find CRGCTR not equal to zero, transfer

the next line into the lexical buffer, and proceed as indicated

above. The system is quadruply buffered: There are two buffers

from the hardware standpoint in the ACIA, and two in software via

the input queue and lexical buffer. This provides virtually no

perceivable lag in system response, even with the fastest typer,

and performs well when a display file composed of a number of

graphics primitives is downloaded via the serial download port.

3.2.6.2. Keyword Recognition

With a string of characters now in the lexical buffer,

subroutine KEYWRD is called (path 3). Due to the design of the

language the first type of token that the lexical scanner" will

search for is a reserved word. To indicate this information to the

lexical scanner subroutine (LEXSCN), subroutine KEYWRD sets the

variable TOKCLS to $01. This variable is global to the rest of the

lexical analyzer and its function is to indicate which type of

- 88 -

token is required. Subroutine LEXSCN (path 13) is then called

evaluate the variable TOKCLS to determine which token type to look

for (keywords through punctuation). Since this is the first pass

through this line of characters in LEXBUF and the variable TOKCLS

contains $01, LEXSCN will call subroutine KWORD (path 21).

The function of KWORD is to scan the lexical buffer from its

beginning, transferring each character to KWBUF, the keyword

buffer, until a delimiter is found. It should be pointed out that

these types of routines were derived from the transition diagrams

and regular expression notation mentioned earlier. During the scan

of LEXBUF and the transfer of characters into the keyword buffer,

subroutine KWORD calls a number of support subroutines to assist in

executing the logic of the transition diagrams. These subroutines

are: GCHAR, to get a character from the lexical buffer; CKAZ, to

check if the characters are between A-Z or a-z; ENDTOK, to

determine if a delimiter was encountered and also if it was valid,

and PSHERR, to accept " an error code generated by one of many

subroutines, push it on the error stack and set the error flag (the

carry bit) to inform higher level routines that an error of some

sort has occurred (path 21,27,28,29,41,43,44,45).

higher level routines to determine if the

considered a fatal or not.

It is up to the

error should be

Once the entire reserved word is transferred

buffer, a reserved or keyword table is searched.

found, an error occurs and the character pointer

buffer

to the keyword

If no match is

in the lexical

is reset to zero and readied for the next line (path

- 89 -

4,15,9,17). At this point, the lexical buffer could be printed out

with the appropriate error messages on the screen. This .was not

done in this version due to project time requirements.

The keyword table is searched by the subroutine BINSCH (path

4), which performs a binary search of the table to determine if the

string of characters in the keyword buffer is really a valid

reserved or keyword.

3.2.6.3. Parsing a Command String

Once the existence of a keyword has been verified, the driver

program of the parser calls the appropriate token gathering

programs to retrieve the tokens required for the keyword and to

store the tokens in the correct places. Once all the tokens have

been successfully gathered, the execution of the command can begin.

Perhaps the best way to explain the implementation of this

mechanism is by following an example. Suppose the command for the

generation of a line from point a to point b was issued. According

to the definition of the language, the general format of a command

line is:

vec M,C,X1,Y1

where M is the coordinate mode specification, either relative or

absolute, C is the color of the line, X1 and Y1 define the end

point. It is assumed that the beginning point of the vector is the

current cursor position. For this discussion, it is assumed that

the keyword "vec" has been found and the address of the driver

program has been loaded (Figure 3-10a). The processor now jumps

COMr’$AN D LEVEL

~ GETMOD

61

BEGVEC

’ ~63,,,,~ XCOORD

4

~ YCOORD

I00

’~ VECDWG

BINSCH 73

BI

COORD

, ;2

FIGURE 3-I0a COMMAND PARSING

B6

BO

GCHAR

ENDTOK

CVTBIN

PSHERR

- 91 -

the beginning of that program (path 60). Subroutine BEGVEC is

short driver program that gets the tokens necessary for vector

drawing. First, subroutine GETMOD is called to retrieve the next

(second) token (path 61). Since the mode token has only alpha

attributes, it is of token class "identifier". Subroutine GETMOD

sets the variable TOKCLS to a $02, and calls subroutine LEXSCN, the

lexical scanner (path 65). Subroutine LEXSCN checks the variable

TOKCLS to see what type of token is to be retrieved, and then calls

the appropriate subroutine. In this example, subroutine IDENT is

called (path 75). Subroutine IDENT calls subroutine GETCHR to get

characters from the lexical buffer and place them in the identifier

token buffer IDTOK (path 79). In addition the lower level utility

subroutines described earlier, CKAZ, ENDTOK, and PSHERR, are called

as needed (path 77,78, 79,80,81,91,92). One additional subroutine

is called in this pass that was not called before. This subroutine

is CK09 and it checks to see if the value passed to it is between

zero and nine. Once the token is found, program flow returns to

subroutine GETMOD where, if there were no errors, the mode is

determined to be either an "r" or an "a". If it was an "r",

indicating relative mode, a $00 is loaded into the variable MODE.

If it was an "a" indicating absolute, a $01 is put into the

variable MODE. If neither one was found, an error is indicated.

If it is assumed that subroutine GETMOD found a valid mode,

control is returned to subroutine BEGVEC which then calls the

subroutine GETCOL to acquire the color token (path 62). Since the

color token is an identifier, the variable TOKCLS is set to a $02

and subroutine LEXSCN is called. (Subroutine LEXSCN is essentially

- 93 -

byte two’s complement representation could have been used, giving a

range of +32,767/-32768. It was decided that encoding the sign

into the least significant bit of a separate byte would have the

advantage of faster checking and decision making in the numerical

handling routines. Therefore the three byte convention was used.

Subroutine CONST calls almost the same support routines as

subroutine IDENT does as well as calling subroutine CVTBIN that

takes the ASCII representation of the number and converts it to a

three byte binary value (path 82,83,84,85,86,90,91,92,93). Program

control then returns back up through the

XCOORD is reached. The binary values

transferred to the variables XSEN, XVALHI,

processing.

levels until subroutine

of the X coordinate are

and XVALLO for later

At this point, the only information still needed to draw the

line is the Y coordinate. Subroutine BEGVEC calls subroutine

YCOORD for this value (path 64). The program path for this token

is the same as described above for the X coordinate.

difference is that the retrieved value is stored in YSEN,

and YVALLO.

The only

YVALHI,

At this point in the interpretation of the command line, all

the tokens have been obtained. It cannot be assumed however that

additional information may not be included in the input line. The

valid termination of a command line is a carriage return or a

semicolon, indicating that the rest of the line contains a comment.

The lexical analyzer continues to search the line for either of

these conditions. In the case of a comment, the remainder of the

- 94 -

line is ignored and command processing continues. It should be

pointed out that the lexical scanner ignores any form of white

space, such as horizontal tabs and spaces, both before and after

tokens and comments. In addition, the syntax for argument

delimiters can be easily changed, in the assemble code, from commas

to spaces, colons or most any other type of punctuation.

3.2.6.4. Command Interpretation

Command interpretation deals with the actual execution of the

command once all of the arguments have been obtained by the lexical

scanning process. This part of the software development basically

replaces the code generator and optimizer portions of a compiler.

The strategy used to develop the command execution software was to

program the microprocessor and VDP in the most efficient manner to

yield the desired result. For example, if a line is desired, a

suitable algorithm is coded in assembly language to do this. The

necessary data transfers to the VDP were also included in the

algorithm. In the case of object generation, each point that is

generated is passed to the VDP to illuminate the correct pi×el in

video memory. If functions such as changing background colors or

reversing video are required, various table entries in the VDP

would need to be changed, which generally resulted in changing

control registers in the VDP or table entries in video RAM.

In the following discussion of the line drawing logic, the

reader should refer to Figure 3-10b. At this point in the

execution of the line draw command the lexical scanning process has

- 95 -

been completed and the tokens are stored in their appropriate place

in memory. Program control has returned to subroutine BEGVEC,

which in turn calls subroutine VECDWG (path 100). The function of

subroutine VECDWG is to call the appropriate variable limit

checking and clipping subroutines before the line is actually

"drawn" (path 101,102,103,105,106,107,108,109). If it is

necessary, subroutine CGMODE changes the specified user coordinates

to internal machine coordinates. The specifed X and Y endpoints

are checked againist the limits of the display area. If they fall

outside of these limits, an error condition results. It is

possible to simply clip the line and inform the operator with a

warning message. Once the limits of all the variables are checked,

the actual line drawing algorithm can be executed (path 104)

provided no error conditions exist. If errors are present, control

is returned up through the subroutines to the error handler and

eventually back to the start of the graphics prompt program.

The details of the line drawing algorithm will be discussed in

next section, however a short synopsis of the

given. Subroutine LINDWG calls lower level

detail in the

algorithm will be

subroutines to calculate the X

between the endpoints at

112,113,114,115,120). Once the

and Y coordinates to be plotted

the line (path 110,111,

coordinate pairs have been

determined, subroutine MAP is called to map these into video RAM.

Subroutine MAP invokes lower level utility subroutines to actually

plot points into video RAM (path 121,122). When each point

finished being plotted, control is transferred back to subroutine

LINDWG and if necessary, another point is computed and plotted.

- 96 -

The mechanism outline here is typical of the command

interpretation process for each command of the graphics system. As

the reader reviews the subroutine flow diagrams, it becomes

apparent that some command interpretation actions are more rigorous

then others. The point to be made here is that any number of

commands may be added with little or no interaction problems for

two reasons. First, the hierarchical design of the software allows

command action to be inserted at a specific level and second, the

majority of the subroutines required for the new command have been

extensively tested.

One drawback in the use of interpreters is the constant

addition of assembly code required to "execute" a new command. To

reduce this problem, a number of support routines were written to

make the system more modular and easily expandable. The more

important support subroutines are: WRVRAM, which writes to video

RAM indirectly through the VDP, RDVRAM, which reads the contents of

video RAM at specified locations, WREG, which writes to the

specified (0-6) VDP register; RREG, which reads the specified (0-7)

VDP register; BLKMOV, which moves a block of data from one location

to another; and MAP, which maps the generated image pixel onto the

current display frame. These routines interface the point

generation algorithms to the VDP. Collectively, subroutines

RDVRAM, WRVRAM, and MAP could be referred to as a raster operation.

3.2.7. Major Algorithm Design

Currently, there are sixteen graphics processor commands

- 97 -

implemented. They range in complexity from turning the cursor on

and off, to object painting. The more complicated algorithms will

be described here along with reasons for their choice. The less

complex algorithms can be analyzed from reading the assembty code

and the comments contained therein.

3.2.7.1. Line Drawing Algorithms

Point plotting techniques are based on the use of a Cartesian

coordinate system. These points are addressed by their X,Y

coordinate pairs. In general graphics displays have three formats

for coordinate systems. They are:

a)

b)

c)

0,0 is in the upper left hand corner, X increases from

left to right, Y increases from top left to bottom left.

0,0 is in the lower left hand corner, X increases from

left to right, Y increases from lower left to top left.

0,0 is in the center of the screen, with the X and Y axis

displayed as in a regular 4-quadrant system.

The second format was chosen because it is generally acknowledged

that people working with any sort of graph are more used to working

in the first quadrant rather than the fourth quadrant or in all

four quadrants. Software hooks are available to support either of

the other two formats.

Lines generated should have the following characteristics.

- 98 -

1. They should appear straight.

2. They should terminate accurately.

3. They should have constant density.

4. The density should be independent of length and angle.

5. They should be drawn rapidly.

There are two basic line drawing techniques. One method has

hardware generate the X,Y coordinate pairs and the other has a

processor generate the coordinate pairs via a software algorithm.

Since the use of the VDP chip precluded the design of the hardware

generator, various software methods were considered. In many

cases, hardware generators implement one of the software algorithms

to be discussed.

3.2.7.1 .1. Symmetrical DDA

Three line generation algorithms

consideration were the symmetrical

(DDA), the simple DDA, and Bresenham’s algorithm.

DDA generates lines from their differential

straight line the equation is:

that were given the most

digital difference analyzer

The symmetrical

equations. For a

dy/dx = ~y/~x

The DDA works on the principle that X and Y are simultaneously

incremented by small steps proportional to the first derivative of

X and Y (Figure 3-11). In the case of a straight line, the first

-99-

Ideal incremental method fo~ straight
line generators

Figure 3-11

- 100 -

derivative is constant and proportional to ~X and ~Y. Thus, in the

ideal case of an infinite precision display a line could be

generated by incrementing X and Y by e~X and e~Y, where e is some

small quantity. However, in the real world of limited precision

displays only addressable points must be generated, i.e. integer

values.

The appearance of lines generated by the DDA depends on the

value chosen for e. In the case of the symmetrical DDA, e is

chosen to be equal to 2 exp -n, where

2 exp n-1 <= max(l~Xl,IAYl) < 2 exp

In fact e is the reciprocal of the DDA’s line-length

this case, 2 exp n.

estimate, in

The symmetrical DDA generates accurate lines, since the

displacement of a displayed dot from the true line is never greater

than one-half a screen unit. Logically the symmetrical DDA is

rather simple; the use of a negative power of two for e means that

the increment of values can be determined by shifting the ~X and ~Y

values rather than by division. Each step in the line is computed

with only two additions.

3.2.7.1.2. The Simple DDA

For the simple DDA, a line-length estimate equal to the larger

of the magnitudes of AX and ~Y is chosen so that either e~X or e~Y

is of unit magnitude. This allows one of the DDA’s adders to

become a counter. The simple DDA therefore generates unit steps in

- 101 -

the direction of greatest motion.

below.

A Pascal implementation is shown

procedure DDA(xl,yl,x2,y2:integer);

var length,i:integer; x,y,xinc,yinc:real;

begin

length:= abs(x2-xl);

if abs(y2-yl) > length then length:=abs(y2-yl);

xinc:= (x2-xl)/length;

yinc:= (y2-yl)/length;

x:= x1+0.5;

y:= y1+0.5;

for i:= 1 to length do

begin

Plot (trunc(x),trunc(y));

x:= x+xinc;

y:= y+yinc;

end

end;

The simple DDA is as accurate as its symmetrical counterpart

but generates a different sequence of dots because of its different

methods of estimating line length. Logically it is simpler, though

it performs an initial division to determine the increment value.

The simple DDA is a good choice for a software line generator, but

the division logic makes it less suited to hardware implementation.

In so far as assembly language programming is concerned, the speed

can be significantly increased by keeping the computations limited

- 102 -

to adding and subtracting with multiplication and division being

limited to powers of two to accommodate the use of left and right

shifts.

3.2.7.1.3. Bresenham’s Algorithm

Bresenham’s algorithm is an interesting variation of the basic

DDA. Like the

changes one of

coordinate may

simple DDA, it is designed so that each iteration

the coordinate values by +/- 1. The other

or

error term maintained by the algorithm. This error

the distance measured perpendicular to the axis

movement, between the exact path of the line and the

generated. The following is a Pascal version of the algorithm. It

is assumed that the line to be generated is between 0 to 45 degrees

in the first quadrant of a four quadrant coordinate system.

may not change, depending on the value of an

term records

of greatest

actual dots

deltay = y2 - yl;

deltax = x2 -xl;

e:= (2*deltay)-deltax;

for i:= 1 to deltax do begin

Plot(x,y);

if e > 0 then begin

y:= y + 1;

e: = e + (2*deltay) - (2*deltax);

end

else e:= e + (2*deltay);

x: = x + I;

end;

- 103 -

This algorithm fulfills all of the desirable characteristics

specified above for line drawing routines. The mathematics used

are integer addition and subtraction and any multiplication is by

two only. There is no division. Even though the mathematical

operations will have to be done in double precision, ie 16 bits,

the processor is still fast at this level. The line generated is

accurate in terms of beginning and ending points. No estimate of

the line length is required as in the simple and symmetrical DDA’s,

and no point can possibly be plotted twice. This is also of

concern, given the mapping algorithms which is used. (This mapping

algorithm is described in Section 2.1.3.6). As pointed out

earlier, this version is only for 0 to 45 degrees of arc. However,

due to symmetry, each 45 degree sweep can be folded about the

origin to plot lines with any slope and length. This is precisely

what is done in the algorithm used by the graphics processor. A

high level pseudo code example of the algorithm designed is as

follows.

deltax = x2 - xl;

deltay = y2 - yl;

if deltay < 0 then xl,yl is swapped with x2,y2;

recompute deltax, deltay;

if deltax < 0 then subflag = 1;

deltax = abs(deltax);

else subflag = O;

if deltay => deltax then swapxyflag = 1;

- 104 -

deltax is swapped with deltay;

else swapxyflag = 0;

for i= yl,y2 do;

e:= 2*deltay-deltax;

for i:= 1 to deltax do begin

Plot(x,y);

if e > 0 then begin

y:= y + 1;

e:= e + (2*deltay - 2*deltax);

end

else e:= e + 2*deltay;

x:= x + 1;

If swapxyflag = 1, then swap x and y;

If subflag = 1, then xplot = xl - x;

else xplot = xl + x;

yplot = yl + y;

plot(xplot,yplot);

end;

Basically the algorithm takes the desired line and rotates it

until it gets into the proper orientation for Bresenham’s algorithm

to work correctly. That is, the line is rotated to the 0 to 45

degree area in the coordinate plane. The points are calculated and

then rotated back to their desired orientation. This reversing

procedure is controlled by the variables SWAPXYFLAG and SUBFLAG.

3.2.7.2. Circle Generation

- 105 -

3.2.7.2.1. The Circle DDA

Circle generation can be accomplished by using a DDA. This

technique is an extension of the line drawing DDA. Since a circle

can be described as a differential equation, a corresponding DDA

can be derived. It is possible to construct a DDA that draws an

exact circle, using the equations

X(n+l) = Xn cose + Yn sine

Y(n+l) = Yn cose - Xn sine

Since e is generally small, values of cos e and sin e are

relatively easy to compute and are then constant for any particular

circle radius. These values, once derived, could be stored in a

lookup table, excluding the need for a sine and cosine algorithm.

These equations can also be used if multiplications on the target

system can be performed inexpensively.

the rules of good drawing techniques,

objects must be drawn relatively

microprocessors do not have an integer,

However, referring back to

it was pointed out: that

fast. Most eight-bit

multi-precision multiply

instruction. Doing the computations in software can be efficient

only if the multiplication routine is not called repeatedly, and

since this is not the case in circle generation, another algorithm

is needed.

- 106 -

3.2.7.2.2. Bresenham’s Circle Algorithm

Bresenham’s line drawing algorithm can be extended for the

case of circular arcs. The Pascal equivalent of the assembly

language used to draw the circle follows:

begin

x = 0;

y = 0;

cdelta = 2 - 2 * radius;

repeat

delta = 2 * cdelta + 2y - 1;

deltap = 2 * cdelta - 2y - 1;

if cdelta <> 0 then

begin

if ((cdelta < 0) and (delta > 0)) or ((cdelta

and (delta <= 0)) then

begin

if (cdelta < 0) and (delta <= 0)

X = X;

y = y + 1;

cdelta = cdelta - 2y + 1;

else

x = x + 1;

y = y;

cdelta = cdelta + 2x + 1;

end;

else

- 107 -

x = x + 1;

y = y - 1;

cdelta = cdelta + 2x - 2y + 1;

end;

else

x = x + 1;

y = y - 1;

until y = 0;

cdelta = cdelta + 2x - 2y + 1;

end;

end;

This algorithm draws a quarter of a circle starting at the

(O,radius) coordinates and generates points to the (radius-l,0)

point. Generation of a complete circle is then just a matter of

transforming the generated X,Y pair in the first quadrant to the

mirror image of the points in the other three quadrants. Since the

circle is always drawn with the radius at the 0,0 point in the

coordinate system, the current cursor X and Y coordinates must be

added to the generated X,Y pair to have them displayed correctly.

This algorithm was used because the multiplication required was one

of double precision, single position, left shifting, and double

precision addition and subtraction. The algorithm uses only

integers, which increases its calculation speed.

The algorithm uses the basic relationship of the points of a

circle with respect to its radius. This relationship is defined

as:

- 108 -

X2 + y2 = R2

where the X,Y pair lies on the circumfrence of the circle of radius

R and the center of the circle is at (0,0). If this equation

discretizied and superimposed on a grid of integer addressable

coordinates, the results can be seen in Figure 3-12. Notice that

only a small subset of the circle points map directly into the

integer coordinate space. Upon careful inspection of the circle,

one can interpolate a set of X,Y pairs that approximate the true

circle. There are five possible areas through which the true

circle may intersect the grid. These are illustrated in Figure 3-

13. If a starting point is known, calculations can be made to

compare the actual X,Y coordinates to that of the constrained radii

of the circle. Depending on the error between the X,Y pairs, one

of three different movements can be made to plot the next point on

the circumference. The point that has the least distance from the

true circle is plotted and then that new position is used to

recompute the next point. The three

movement are illustrated in Figure 3-14.

on the circumference of the circle

continues to (radius,I).

the first quadrant, its

then calculated, yielding

mathematical derivation of

Appendix.

possible directions of

The calculation of points

starts at (O,radius) and

Each time a new point is calculated in

three corresponding quadrant points are

a complete circle. A complete

the algorithm can be found in the

-109-

portion of circle overlayed on grid

Figure 3-12

Center of circ~

Five possible intersection areas of
circle on grid

Figure 3-13

-II0-

X+I,Y

X+I,Y-I

Three possible directions of
movement when circle drawing

Figure 3-14

- 111 -

3.2.7.3. Painting Algorithms

3.2.7.3.1. Recursive Pixel Painting

Painting an object, in its simplest form, is the process of

filling an enclosed object with color. In its more enhanced form,

the user can paint not only single colors but combinations of

colors and patterns. An example of this would be filling a

rectangle with a pattern of crosshatches of a blue color. If the

processor is not capable of producing colors, various gray scales

could possibly be used. Never the less, painting algorithms should

produce the same result. A user of a painting program can first

draw the outline of the object, and then use the filling function

to "spread paint" in the interior of the object. The filling

operation starts by replacing the color value of a single pixel,

and then spreads throughout the raster, replacing the value of any

pixel that contains the old color with the new color. The

spreading .operation stops whenever it encounters a pixel that does

not contain the "old" color. In other words, the algorithm hits

the perimeter of the object. The technique is best expressed by

the following recursive procedure:

procedure Fill(x,y,oldcolor,newcolor: integer);

begin

if GetPixel(Framebuffer,x,y)= oldcolor then begin

Setpixel(Framebuffer,x,y,newcolor);

Fi l I (x+l ,y,o Idco lor,newco for)

Fi l l (x-1 ,y,o Idco lor,newco for)

Fi I I (x,y+1 ,o Idco lor,newco lor)

end;

- 112 -

Fi 1 l (x,y-1 ,o ldco lor,newcolo r)

end

The user invokes the filling function by positioning the

cursor over a pixel within the region to be filled, and indicating

a new color. The fill operation will then spread the color

throughout the region. One aspect of the above painting algorithm

must be pointed out.

paint will "spread"

unbounded area.

If the object is not completely closed, the

outside the object and fill the entire

3.2.7.3.2. Recursive Scan Line Filling

The above filling algorithm has a major problem related to the

practically of it. In theory, the algorithm works fine. In

practice, it fails because it is highly recursive. Most modern

computers have large stacks that can handle recursive events quite

well, however the algorithm will quickly use up any realistic stack

space if called upon to paint a large object since it recursively

calls itself for every pixel it finds that is not of the new color.

Because the target system for this painting algorithm is

relatively small, a more efficient algorithm had to be developed.

Consider the architecture of the video display processor and video

memory. Video memory is arranged as a linear array and the display

window is output to the screen as shown in Figure 3-15. Suppose a

horizontal line is drawn across the screen from points A to B.

Axis

Row 0

Row I

Row 22

Row 23

Y Axis

904

;IF04

;IF07

$"’ 808

$ 80F
$ 908

$ 90F

~ACTIVE DISPLAY AREA

$ 8FO ’

8F7
9FO

I ~; qF7

$1EFO

$IF77
$1FFO

$IFF7

Video RAM to Display Screen Mapping

- 114 -

The process to do this is: 1. Find the VRAM address of the starting

point, 2. Set the appropriate bits "on", 3. Add eight to the

current address to get to the next line segment, 4. Determine if

the current byte contains the endpoint and either fill in the bits

to that point or turn on all the bits and fetch the next address.

Drawing a horizontal line in this manner is very efficient.

Now consider an object to be painted as a collection of

horizontal lines with only the endpoints specified. Painting by

"lines" instead of pixels would greatly reduce the stack space

required. The general algorithm is still recursive in nature,

however careful design of the algorithm minimizes the information

that needs to be kept on the stack. The algorithm is as follows:

Type

StackRecord = record

XMax : integer;

y : integer;

ydir : integer;

icount : integer;

end;

Var

StackPointer : integer;

{Current Level of the Stack}

Stack = Array[1..N] of AStackRecord;

Procedure PositiveFill(Var XMax:integer);

Var x:integer;

- 115 -

End;

Begin

For x := CurrentPosition to ScreenMax do

If PixeIStatus(x)=Off then

Begin

x := TurnOn(x,y);

XMax := x;

End; {If}

{PositiveFill}

Procedure NegativeFill(Var XMin:integer);

Var x:integer;

Begin

For x := CurrentPosition downto ScreenMin do

If PixeIStatus(x)=Off then

Begin

x := TurnOn(x,y);

XMin := x;

End; {If}

End; {NegativeFill}

Procedure Painting;

Begin

LO:

Posi ti onFi I l (XMax)

NegativeFill(XMax);

- 116 -

LI:

L2:

L3:

ICount := Xmin;

ICount := ICount - 1;

ydir := up;

Push(XMax,ICount,ydir,yline);

If StackPtr <= StackMax then

Begin

ydir := down;

ICount := XMin;

A := yline + ydir;

If NOT ((A >= 0) AND (A <= 191))

Begin

If StackPtr >= 0 then

Pop(XMax,y,ydir,ICount);

Else

Goto L4;

ICount := ICount + 1;

If ICount > XMax then

Goto L1

Else

Goto L2

End Else

If PixeIStatus(ICount,y+ydir) then

Begin

XTemp := ICount;

XTemp := XTemp + 1;

If XTemp = 0 then

Goto L2

- 117 -

Else

Goto L3

End Else Begin

If (ICount = FF) then

Begin

Push(XMax,Icount,ydir,yline);

If StackPtr <= StackMax then

Begin

yline := yline + ydir

Goto LO;

End Else

Goto L4;

End; {IF ICount = ff}

L4:

End;

End else

Goto L4;

The initial values of X and Y are taken from the current

cursor position. The user positions the cursor inside the object to

be painted. The paint command is typed and the algorithm is

entered. Checks are made to determine if the cursor is on an

object boundry, or inside or outside of the object. If on a

boundry or already inside a painted object, an error condition will

result. If not, the current cursor X and Y coordinates of the

cursor initialize the XMAX, XMIN and ¥ variables. The next step is

to fill in the line segment to the right of the cursor. This is

- 118 -

the variable XMIN.

exists and the

subroutine PUSH.

YDIR, and

done by subroutine POSITIVEFILL which returns an updated value of

the variable XMAX. The lefthand part of the line segment is now

done by subroutine NEGATIVEFILL and it returns the updated value of

All the information about the current line now

state is saved on the paint stack by calling

This subroutine stores five values, XMAX, Y,

ICOUNT, onto the paint stack. Now a direction must be

chosen to move along the Y axis to paint the next line. YDIR is

arbitrarily set to UP. The line counter is advanced by one, and

the new line is filled. If the parameters of XMIN or XMAX do not

match the previous values, a new state has been encountered,

indicating a "hole" and this condition is saved on the

the object does not change the XMIN or XMAX

continually incremented by one until the border of the

encountered.

stack. If

values, Y is

object is

When the border of an object is encountered, the direction

painting, YDIR,

remains the same

"painted". When

of

is changed from UP to DOWN. The basic algorithm

but this time through, the pixels are all

a line is encountered where ICOUNT is different,

the paint stack is popped through subroutine POP. The reason this

state was saved is that a possibly unpainted area was encountered.

The direction is inverted from down to up or vice versa, and the

painting continues as described before. When a new border is

encountered, the stack is popped and the process continues until

the paint stack is empty. It should be pointed out that in this

painting algorithm, as with many, if an opening of even one pixel

exists in the object, the "paint" will spread outside the object

- 119 -

and consequently "paint" until the border of another

reached, or the limits of the screen are encountered.

object is

In the actual assembly code implementation of the routine,

some efficiency enhancements were incorporated. For example, when

the direction of painting along the Y axis is changed, there is no

need to repaint already painted pixels. This pixel checking takes

time and the results are already known before hand. So, the values

of XMIN and XMAX are changed to the new endpoints and painting

Continues from there. Also, four variables are always stacked or

unstacked, making the stack area as small as possible. These four

variables are located in a contiguous block so stack transfers can

be quick and efficient.

The implemented algorithm is both fairly quick and efficient

for moderately sized objects. As the object becomes more complex

and very irregular, the stack space and painting time will grow

tremendously. For this reason, stack limit checks were

incorporated to prevent overwriting system variables. If a stack

overflow should be detected during the painting of an object, the

user can reposition the cursor to the unpainted section of the

object and reissue the command.

It should be pointed out that the current painting command

does not support color or gray scale arguments. This is due

primarily to the hardware limitations of the VDP. The VDP does not

support true bit mapped color graphics. To do this multiple VDP’s

would be required, each controlling a separate color plane, and

while this is very technically possible, it was outside the scope

- 120 -

of the project. Figure 3-16 depicts the architecture of such a

design. One VDP can display multiple colors on the screen with

certain restrictions that are described in the VDP data sheet in

the Appendix. Although one way around these limitations is to

include a set of rules to accommodate limitations in the painting

and object drawing algorithms, the original scope of the project

was to produce a monochrome display. Thus, these limitations were

not considered to be necessary to overcome.

The assembly language implementation makes use of a very

modular approach to the solution to the problem. Initially,

whenever subroutine BEGPAT is called to paint an object, subroutine

NORMY is called. Subroutine NORMY changes the user coordinates of

the cursor to the VDP coordinates. It changes the X, Y coordinates

of the cursor to X = X and Y = 192-Y. Subroutine PIXSTA is then

called to check the state of the pixel directly under the cursor.

If it is already on, an error condition is reported through

subroutine PSHERR. If not, the length of the line segment to the

right of the cursor is determined and filled in by subroutine

FILLP. This subroutine makes use of subroutine FINDAD to determine

the video RAM address that corresponds to the specified X and Y

coordinates. For the first time through, this address corresponds

to the cursor coordinates. Then the left hand part of the line

segment length is determined by subroutine FILLM. Similarly,

subroutine FILLM makes use of FINDAD and WRVRAM.

Subroutines PUSH and POP are the paint stack handlers.

Subroutine PUSH is called whenever the block of the four pair~ting

-121- - - -

Address
Data

Control

VDP #1

IADDRESS}~ CS~co~ I sY,c ~

~-
VDP #2

SYNC ~

CS

VDP #3

VRAM

(RED)

COMPOSITE VIDEO OUT

VRAM

(GREEN)

COMPOSITE VID. O~U~

VRAM

(BLUE)

NTSC COMPOSITE

VIDEO OUT

SYNC

-- I OLOCK i

COMPOSITE VIDEO OUI

Figure 3-16

- 122 -

state variables need to be saved. Subroutine POP takes

restoring these variables from the stack to the user area.

care of

3.2.8. Error Handling

In order to provide a good user interface as well as to aid in

the debugging of the software, an error handling mechanism was

considered essential in the software design. Error handling

consists of two functions: detection and reporting. In general,

error detection is case dependent while error reporting is case

independent and uniform.

3.2.8.1. Error Reporting

The manner in which the overall system reports errors can

greatly affect how pleasant and economical it is to use the system

and/or the language. Good error diagnostics

reduce the time required for debugging.

diagnostics should follow these guidelines:

can significantly

Well designed error

The message should pinpoint the errors in terms of the

original source statement, rather than in terms of some

internal machine representation that is mysterious to the

user.

The error message(s) should meaningful and

understandable to the user.

The message(s) should be specific

problem.

The message(s) should not be redundant.

and localize the

- 123 -

The error diagnostics on this version of the software embody all

the above guidelines, but in some cases not as robustly as one

would want. However, these shortcomings were realized in the

software design, and "hooks" were incorporated wherever possible to

embellish the error reporting. They will be highlighted in the

following descriptions.

For sake of discussion, assume that an error condition is

encountered. As the software is presently designed, an error is

reported in the same manner, no matter where or how it is detected.

When an error is detected, it is identified with a number. This

number is then pushed onto an error stack, identified in the

assembly code as ESTACK. Depending upon the type and location of

the error, the current task continues or halts immediately. The

interpreting of a command line is viewed as a fatal error and

processing of the line halts. If a source file is being executed,

processing continues with the next line.

Because the

nature,

levels.

designer.

software was designed to be hierarchical in

error reporting can propagate and be flagged at various

This can help both the system user or the software

For example suppose the following command line is input:

cir a,rd,30,40,40

The circle is to be positioned according to absolute coordinates,

with a color attribute of red, a radius of 30, and centered at

40,40. The mistake is in the specification of the color. The

correct mnemonic for red is "mr". The lexical scanner will

- 124 -

correctly gather the tokens and the syntax will

error wi l 1

reporting

17. The

code that is generated by that routine.

on the screen will look like:

be correct. The

be flagged at a very low level. To follow the error

process refer to the subroutine flow diagram, Figure 3-

numbers inside the subroutine blocks refer to the error

The error message produced

Error numbers 40, 8, 9

Subroutine BINSCH first identifies the basic error, there is no

match in the color lookup table (path 22,37). The error number (9)

is placed on the error stack and the carry flag is set. Setting or

clearing the carry flag is the universal technique used throughout

the software to signal the presence (carry=l) or absence (carry=O)

of an error condition. Control returns to the subroutine that

called subroutine BINSCH. In this case, it was subroutine GETCOL.

At this point, in subroutine GETCOL, the error is further defined

as a non-existent color. Therefore, error number eight is placed

on the error stack by calling subroutine PSHERR (path 23).

addition, subroutine GETCOL also indicates that an error was made

in the color field of this command. As before, the appropriate

error code is loaded ($28) and subroutine PSHERR is called.

Program control returns to subroutine BEGCIR and since the carry is

set the subroutine immediately returns to the main program. The

main program interrogates the carry flag, sees it is set, calls

subroutine POPERR to print the error message and dump the error

stack (path 21,7,8,9,10,11,14). At this point the system prompt

issued and the system is waiting for additional input. The user

START

"~ ,

!
2

3

<B~Nsc. ~K---
$09

5

! JUMP TO m__.¯ COMMAND LEVELI
6

’ RETURN FROM ~7
~ COMMAND, LEVELp

I
8

~T-----I 3 I N
9

~ MAP

34 35

Error handling flow diagram

Figure 3-17

- 126 -

can then retype the proper form of the command line.

The information conveyed by the error messages pinpoint

exactly where the problem is. The user can refer to the system

error messages listed in the Appendix for the meaning of the error

numbers. In some cases not all of the displayed error numbers will

be of great help to the user. In this case, informing

that the binary search failed is of questionable value.

to a person doing additional software development work,

of information may prove useful.

the user

However,

this kind

Although the use of error numbers is cryptic, a framework does

exist for generating complete messages. To generate actual error

messages, the error numbers that are popped off the error stack can

be used as indices into a table of pointers to stored ASCII

messages. These messages can then be placed into the print or

output queues and dumped to the terminal. For the initial proof of

concept, it was felt that this was not necessary.

A related problem exists for the interpretation of a large

source file. The user will not know where the errors are. A

possible solution to this problem is to make use of the multiple

buffering of the system. Since the command line is moved from the

input queue into the 80 character lexical buffer queue, which is

not destroyed in the lexical scanning process, the contents of

this buffer could be transferred to the print or output queues,

dumped out, and then the error numbers or messages could be

displayed immediately after that.

- 127 -

3.2.8.2. Error Detection

For error reporting to provide useful information to the user,

error detection must be incorporated into each phase of the

software and should be as comprehensive as possible. The software

developed for this project consists of two major functions: command

interpretation and command execution. In the command

interpretation phase, many possible failure modes were allowed for.

Some of the typical errors identified were:

1. Invalid keywords.

2. Constants beginning with or containing alpha characters.

3. Identifiers consisting of all numbers.

4. Unidentified characters in constants, identifiers, or strings.

5. Invalid token delimiters, end of line characters, etc.

These are generally referred to as syntactical errors as

generated by the lexical analysis or

interpreter or compiler. A review of the

will reveal what subroutines

types of errors generated by the

semantic errors. In general,

compile time.

they are

syntactic phase of the

assembly code comments

generate what error codes. Other

system can be referred to as

they are detected at execution or

Examples of these types of errors are:

2.

3.

4.

Constants being over or under certain boundary conditions.

Invalid or undefined colors or various other object attributes.

Incompatible modes with given coordinates.

System status messages, ie, paint stack full, message queue full.

These types of errors could occur during a "check" phase of the

- 128 -

command arguments or during the actual execution of the command.

As the capability of the software is increased and new commands are

added, the amount of code devoted to semantic error checking will

increase more quickly than the code devoted to syntactic error

checking. This is because the main body of code for lexical

scanning is already well defined as are the types of errors to be

searched for. The additional error codes will reflect errors in

the actual execution of the command rather than in parsing its

structure.

3.2.8.3. Error Correction

A third area of error handling capability is that of error

correction. This capability allows the interpreter/compiler to

repair the error so that processing can resume. Generally, this is

a very complex process and a very good argument exists for not

incorporating large amounts of time in this area. The basic

premise is that in order to correct the code, the interpreter/

compiler must know the intent of the programmer. If the intent is

obscured by a large number of errors or by vagueness of the

program, it becomes difficult or impossible to correct the

error(s). The amount of code or execution time that is required

for error correction is therefore usually not worth the investment.

Language Design

- 129 -

4.1. Introduction

Designing a graphics language consists of defining an

instruction set through which the user interacts with the graphics

hardware. To some extent~

depends upon the hardware

dealing. For example, some

the design of a graphics language

interface with which the user will be

systems dea~ mainly with keyboard

input, with the command appearing on the screen directly below the

drawing area. Other systems may incorporate the use of a mouse or

joystick and objects can be generated by menu selection or direct

cursor movement. In order to minimize the cost of this system, a

standard terminal was selected as the input device, with the output

being delivered to a monochrome or color monitor.

4.2. Design Issues

For any of the interfaces mentioned above, the software design

should take into account the following issues:

Simplicity: Features that are too complex for the application

programmer to understand will not be used. In the design

of a complete graphics system, it is often difficult for

the designer to detect this type of problem in the

system.

Consistency: A consistent graphics system is one that behaves

in a generally predictable manner. Function names,

- 130 -

calling sequences, error handling, and coordinate systems

should follow simple and consistent patterns without

exception. For example, all relative mode cursor

movements should adhere to the same concept of coordinate

system designation and direction.

Completeness: There should be no irritating omissions in the

set of functions provided by the system. Missing

functions will have to be supplied by the programmer, who

may not have

resources to

Completeness

system need

facility.

the necessary access to the computer’s

be able to develop the functions.

does not imply comprehensiveness; i.e., the

not provide every imaginable graphics

Robustness: The software should be debugged in all modes of

operation, and should provide meaningful error reporting.

A graphics language that has a very low tolerance of

random white spaces and is very demanding in terms of

precise command formatting is not very robust.

Performance: The overall system implementation should stay

with its original design objectives. Generally, graphics

system users respond well to systems that offer an

equally consistent speed of response.

Economy: It is always frustrating to write an application

program only to find that it is too bulky or too

expensive to use. Well designed software should be

- 131 -

composed of powerful primitives that

string of arguments three lines long.

don’t require a

These issues provide the designer with a number of ground

rules for graphics software design. As in any design undertaking,

trade-offs are a reality that must be considered. The above

guidelines were followed wherever possible during the design of the

language for this project. Aspects of the language design that

followed the guidelines will be discussed below. It must be

pointed out that the initial charter of the project was to

implement a few graphics primitives and display the results on a

monitor. Since the resulting equipment was intended to be useful,

as well as a proof-of-concept, much more time was placed on the

software design task than was needed to fulfill the project’s

initial requirements.

graphics primitives,

implementation. The

This yielded the design of a cohesive set of

from which a subset was chosen for

primitives that were implemented will be

preceded by an asterisk (*) in the following discussions.

4.3. Functional Domains

The commands for the graphics display processor can be grouped

into the following six areas:

Graphics Primitives: These are high level commands used

to generate and display straight lines, text strings,

circular arcs, and other graphical elements.

- 132 -

Windowing Functions: These commands allow the user to

choose the coordinate system for picture definition and

to define the boundary of the visible portion of the

picture.

Display File Manipulation: Allows the user to define,

edit, list, and move image files or segment files.

Animation File Creation and Manipulation: Enables the

system to manipulate or use display image files

containing specific attributes for object movement¯

Control and Miscellaneous: Allows the user to set or

reset various system default parameters, as well as make

inquiries as to the cursor position, background color,

etc.

Editor Commands: These may or may not be part of the

actual graphics system package. They permit the user to

edit display lists, move display lists and change file

attributes.

These topics can be subdivided

command mnemonics. The mnemonics,

with a general description of their

further into their actual

and their definitions, along

argument list and why the

structure was adopted are listed below. For the subset of commands

actually implemented a set of reference sheets with attributes and

usage can be found in the Appendix.

- 133 -

4.3.1. Graphics Primitives

Graphics primitives are the functions that are used to specify

the actual lines and characters used to compose a picture. These

primitives should be robust enough to allow the user to construct

simple, often used objects (cube, square, rectangle, etc.) with

little difficulty, and still permit the construction of very

complicated objects in a straight forward manner, consistent within

the limitations of the overall instruction set.

graphics primitives follows with an asterisk

primitives actually implemented.

A list of the

(*) denoting the

* a) MOV M,X1,Y1

* b) VEC M,C,X1,Y1

c) BARC M,C,X1,Y1

d) MARC M,Xn,Yn

f) EARC M,Xn,Yn

g) ARC M,R,C,X,Y,D

h) DTX C,"xxx"

* i) CIR M,C,R,X,Y

- Move cursor to new location
specified by Mode (M), to X1,Y1

- Draw a line from current position
to a point specifed by Mode (M),
position X1,Y1, with Color (C).

- Draw an arc with this point as a
defined beginpoint with Mode (M),
Color (C), position X1,Y1.

- Draw an arc with these sets of
control points specifed by
Mode (M) thru points X,Y.

- Draw an arc with this point: as
the defined endpoint specified
by Mode (M), to point X,Y.

- Draw an arc thru a set of
defined points specified by
Mode (M), with Radius (R), Color
(C), Center at (X,Y),
D Degrees.

- Display the string characters
with Color (C).

- Draw a circle with Mode (M),
Color (C), Radius (R),
with center at X,Y.

j)

- 134 -

RECT M,C,X1,Y1,X2,Y2 - Draw a rectangle (square)
with Mode (M), Color (C),
with Diagonal X1,YI, X2,Y2.

These commands allow the user to

object consisting of two dimensional

various combinations of MOV and the

construct virtually any

surface descriptions. By

remaining mnemonics, many

different shapes can be created. The general format of the command

line for the graphics primitives is:

command mode, color, attribute, X1, YI, X2, Y2

The command is the keyword, mode defines one of two coordinate

attributes either relative (R) with respect to the cursor position

or absolute (A) with respect to the lower left hand corner of the

display, and color specifies one of the sixteen available colors.

The attribute argument may vary depending on the keywordo The

keyword CIR defines this attribute as the radius, DXT may define it

as the text, and the other keywords may not require any attribute

at all. The X,Y coordinate pairs are used as begin points,

endpoints, or begin-end pairs, according to the keyword selected.

For example, CIR would use only one X,Y pair to locate the center

of the circle. By comparison, RECT would use two pairs to define

the diagonal endpoints of the rectangle.

The philosophy of the structure of the command string needs to

be addressed. For example to construct a square somewhere in the

middle of the screen, the command sequence would look like this:

mov a,100,100
vec a,ly,150,100

;position cursor
;construct top line,

vec a,ly,150,50
vec a,ly,100,50
vec a,ly,100,100

- 135 -

;right hand side
;then bottom
;and finally the left hand side

A question that immediately comes to mind deals with the

repeated typing of the mode and color values for each lin~e. Two

points of view can be expressed here. First, separate commands

could be used to set the mode and color. This would eliminate the

retyping of the mode and color attributes. The counter argument is

that with frequent jumping in and out of these states, the user

might assume a certain condition exists when in fact, the existing

mode or color was not the desired one. It was decided that the user

should have to make a conscious decision in order to minimize

unexpected results. Second, this improved the uniformity of the

language design, at least in the case of the graphics primitives.

And third, since the input device was intended to be a keyboard,

some command format was required to convey this information. In

addition, since the user is required to type only a single letter

for mode, either A or R, and two letters for one of the sixteen

colors, it was deemed that the amount of typing overhead was not

excessive.

Since cursor movement was to be performed through the keyboard

with the system in graphics mode, the MOV command was implemented.

It is true that by using selected keys, such as the "h", "j", "k’°.

and

done.

w@s

considered to be a better device with which to control the

"l" keys, moving the cursor by "rubber-banding" lines could be

Since the project was to implement a proof-of-concept, this

not implemented. However, a joystick/mouse interface is

cursor,

- 136 -

and hardware provisions exist on the computer board for interfacing

to this type of device.

4.3.2. Windowing Functions

Windowing functions allow the user to choose the coordinate

system for picture definitions, and to select the boundary of the

visible parts of the picture(s). In many graphics systems

windowing allows the user to break up the screen into multiple

sections to display different areas of information in different

parts of the screen. For example, the bottom 10% of active display

area could display the status of certain system variables such as

mode, cursor coordinates, etc., with the remaining screen serving

as the working space. If the user so chose, he could sub-divide

the working space into various windows. Figure 4-1. These

functions are very valuable in many systems, however, due to the

resolution of

project, the

implemented.

the selected display and the specifications of this

windowing functions were only specified and not

They are shown below.

a)

b)

SWD - Set window

SVP - Set viewport

It is convenient if window(s) and viewport(s) can be defined

separately with a pair of functions. The commands are of the

following form:

-137-

I--" 1
I I I I
|

VlEWPORT I ’-’ I ~ iI I

[VIEWPOBT
"~ !

~

~ I I I
_-I

Multiple viewports, independently scaled and position~
on display surface.

Figure 4-1

- 138 -

keyword xmin,ymin,xmax,ymax

The keywords are SWD and SVP. The arguments xmin, ymin, xmax, ymax

define window or viewport positions to extend from (xmin,ymin)

the lower left to (xmax,ymax) at the upper right. A single

function could do the work of both of these functions, but it would

then be more difficult to change the window independently of the

viewport.

4.3.3. Display Files Creation and Manipulation

In graphics systems, the display files consist of sequential

graphics primitives that will produce an object when executed. The

following commands would allow the user to accomplish these file

creations and manipulations.

a) DEFIL - Define an image file with name xxx

b) ENDFL - End image file name xxx

c) LSTFL - List the image file xxx

d) DSFIL - Execute file name xxx

e) RMFIL - Remove image file with name xxx

f) CALLI - Subroutine call to image file xxx

g) RETIF - Return from subroutine call

The above instructions have the basic form of:

keyword filename

- 139 -

As can be seen from the above list of commands, strong similarities

exist between manipulating files in this graphics environment and

performing typical operations on disk files. This approach to

display handling is by no means the only scheme. It is a widely

accepted approach that is particularly appropriate to the concepts

of the graphics and animation aspects of the language.

To open a display file, one would use the DEFIL command. The

user could then compose a file of graphics primitives. To close

the file, the user would issue an ENDFIL command. Deleting a file

would make use of the RMFIL command. In order to execute the

contents of the file, the user would issue the DSFIL. Various

files could be chained together by using CALLI and RETIF commands.

These files would be executed in the order called. If execution

were interpreted, no problems would occur. If, however, the files

would need to be compiled, then a line command would have to be

designed and used to link the appropriate source display files

together.

As was just pointed out, execution can be thought of as either

compiling or interpreting. Therefore, a mechanism is requilred to

permit the generation, editing, and execution of these files.

There are some aspects of the hardware configuration that must be

considered in the design and implementation of such commands.

Perhaps the most obvious is that in order to have disk files,, disks

must exist and so must the software to control and interact with

them. These do not currently exist in this system. Thought was

given to a method by which one could do a similar operation. The

- 140 -

total addressable memory that the 6502 processor can access is 64K

bytes. The language and utilities ROM reside in the top 8K, making

the remaining 58K available for user code. If the bottom 2K is

used for zero page variables, stack and miscellaneous tables, etc,

this results in about 56K of RAM for the user. If this memory were

organized similarly to a disk file structure, a limited, but useful

system could be designed and implemented. For initial design

purposes, suppose that 4K of

directory block that would

RAM is

contain

viewed as the file name

the file name, a pointer to

where it is in the remaining 52K of RAM, and perhaps the size of

it. For this somewhat simplistic file arrangement, there would be

no need for linked lists of "free blocks" or "used blocks"

The file itself

character, a preset

main body of the file,

created files would

would consist of a beginning-of-file

number of bytes to act as a file header, the

and then an end-of-file marker. Newly

be appended to the end of the last file

structure. Deleting a file would consist of finding the file in

the file directory block, deleting that entry by performing a block

move of the remaining file names and attributes over the top of the

file name(s) to be deleted. In a similar manner, the file itself

would be removed by copying the remaining files over the top of the

file to be deleted. The only difference in this operation would be

for the last file. It would simply be overwritten with nulls in

the file directory portion of RAM.

With the capability of creating and maintaining files, the

ability to edit them should also exist. Because of the rather

- 141 -

limited RAM available, a lot of sophisticated editor commands could

not be implemented, however an adequate subset of editing functions

has been defined and module specifications written. The editor

commands will be examined in detail later.

With this somewhat simple but efficient file structure,

number of files could be created, maintained, and executed.

addition, if files were created on another machine, they could

downloaded

system.

a

In

be

(in ASCII format) and appended to the current file

4.3.4. Animation File Creation and Manipulation

Now that the concept of files

outlined, the topic of object

hardware has been designed with the

and their support has been

animation can be addressed. The

long term objective of the

project to provide a graphics system with a flexible and easy to

use language for defining object motion. The choice of this

particular VDP was made because of its use of sprites. Five timers

were included in order to provide internal clocking capability for

various objects. In order to tie this all together, a special file

structure, referred to as an object animation file, was conceived.

As an example of how an animation file might be used, suppose that

five objects have been created, each described in its own separate

file. In order to move

animation file would be

primitives as in the

attributes.

these objects on the screen, an object

constructed (using the same graphics

original file), with various motion

These attributes would include such parameters as file

- 142 -

name, direction of movement, rate

movement, and synchronization. The file

listed below.

or frequency, repetition of

attributes commands are

PATHXY X,Y -This command indicates the points through

the object defined as xxx is to move.

which

VEC - This is a short hand notation to describe the

of an object between two points in a linear

fashion.

path

DELAY - This command allows the user to program in a delay

time for the motion of an object. The delay

time becomes effective at the endpoint of an

object’s path.

REP - Allows the motion of an object to be repeated

between the path endpoints, i.e. the movement

between endpoints A and B would took like A-B,

A-B, A-B

OSCIL - Permits the motion of an object to be repeated in

back and forth manner, (i.e. A-B-A-B-A-B)..

START - Starts the motion

animation file.

of an object in the object

STOP -

- 143 -

Stops the motion of an object.

TIME - Defines the time in seconds at which an object is

moved across the screen.

SYNC - Synchronizes the movement of one object with one or

more other objects.

In order to more fully explain the uses of these commands,

consider the following specific example. Suppose a circle were to

be created with the intent of moving it back and forth across the

display screen in an oscillating motion. The user would create the

following file:

1 DEFIL 3

2 TIME 5

4 DELAY 10

OSCIL n

SYNC n,X,Y,i7

8

9 VEC XIY1,X2Y2

10 MOV a,X,Y

11 CIR a,ly,30,40,40

12 ENDFL

; Define object named #3.

; It will take 5 seconds to go from its

; beginning point to its end point.

; At each end point it will wait 10 seconds

; before doing anything else. ,

; The object motion will oscillate.

; Start the movement when object n reaches

; point X,¥ in line "i".

; This is to be the desired path.

; Now define the object.

End the file.

The first six lines define the object movement attributes and

- 144 -

the remaining lines define the object. To distinguish this from an

ordinary display file, the TIME attribute must follow the DEFIL

statement. In order to properly interpret the commands, a file

must be defined and built. This file can then be run through the

interpreter and a special motion attribute or control block will be

built in the processor’s memory. In addition, during the actual

composition, of the object, sprite(s) will be allocated for use

the object’s construction, instead of having the object mapped into

the "static" video memory plane. This is done because a sprite can

be used to move an object more quickly than it can be done by

erasing and then redrawing the object.

To see the type of object built by this file,

the DSPFL in command.

object would be executed.

static video plane. To

one would use

The portion of the file that builds the

The object would be constructed in the

display the object and its associated

motions, one would use the START "n" command where "n"is the object

number. Stopping the object would be done by using the STOP "n"

command.

Suppose the object’s motion were to be repetitive instead of

oscillatory; Line six (6) would be changed from OSCIL to REPEAT.

If the motion were to be along a curved path, Line nine (9)

be changed from VEC XIY1,X2Y2 to a series of PATHXY X,Y’s.

points would be considered control points for a curve

algorithm to calculate

taken by the object.

would

These

fitting

the discrete X,Y points of the path to be

In the interest of keeping the scope of the project to a

- 145 -

reasonable size, these commands were not implemented. However,

since the ability to provide objects with motion capabilities was

an important language goal, a mechanism for doing this was designed

and is outlined in the following discussion.

4.3.4.1. Mechanics of Object Animation

4.3.4.1.1. Building the Animation Block

First, the object to be animated must be built in an animation

attribute file as described above. This source file is then

directed to the interpreter. The effect of the DEFIL 3 command is

to start constructing in memory an object animation attribute table

whose name is "3". If the next line in the input file were not a

TIME command, object 3 table would be "erased". Since it is

present in this example, the next byte in the table is the binary

representation of the specified time.

The next line to be interpreted contains the DELAY command.

This line will cause the interpreter to take the numeric value of

the delay time specified, convert it to its binary equivalent, and

place that value into object three’s animation attribute table. A

similar action will take place when the line containing the OSCIL

command is encountered. The number of repetitions for the

oscillation will be appended to the animation attribute table. The

process of building this animation attribute block continues until

a keyword for graphics primitives or cursor control is encountered,

which signals the loader program that the attribute block for this

- 146 -

particular object is to be closed. Encountering any additional

animation commands in the body of this file will result in an

error.

4.3.4.1.2. Sprite Allocation

Assuming no errors are encountered, the object is then

constructed in the "static" video memory, i.e. no sprites are

allocated to compose the movable object. The next step is to

determine the optimum pattern for the allocation of the 16 x 16

pixel sprites. (The sprites are magnified to achieve the maximum

possible area to assign to an object.) This optimization could be

done in one of three ways. The first method uses information

supplied by the user in a command, which would specify the width

and length of the object. The command could have the form:

BOX X, Y, L, W

where BOX is the keyword, X,Y are the upper left hand coordinates

of the "box" to be drawn around the object, L is the length (X

direction) in pixels, and W is the width (Y direction) in pixels.

This" information would then be used by lower level subroutines to

calculate an integer number of sprites to be allocated in an end-

to-end fashion (side-to-side and top-to- bottom) to completely

cover the object. The calculated X,Y coordinates of each separate

sprite would then have to be loaded so they would be correctly

positioned on the screen, adjacent to each other. A check would

have to be incorporated to insure that no more than four sprites

are assigned on the same horizontal scan line at the same time. (A

- 147 -

limitation of the VDP; see Section 2.1.3.4 for a discussion of the

problem and possible solutions.)

Another method to box an object is to use a variation of the

painting algorithm described in Section 3.2.7.3. At the end of the

display list the user would position the cursor inside the object

to be painted. The object would then be painted with a transparent

color using a slightly modified painting algorithm that would save

the lowest values of XMIN, YLINE and the largest values of XMAX,

YLINE. These two endpoints would be used to construct a box around

the object. The sprites would be allocated as described in the

above paragraph.

The third method would be to keep a list of the smallest and

largest X,Y coordinate pairs when the pixels of the object being

generated are plotted.

these X,Y pairs as

discussed in the above

A rectangle could then be constructed using

the endpoints of the rectangles diagonal, as

paragraph. For most applications, this

method is probably the most efficient.

There are other methods that could be used in

objects. One such

clipping atgorithm.

the boxing of

method is a variation of the Cohen-Sutherland

If the capability of the system is expanded in

the future to support multiple windowing and viewporting, this

algorithm would be a good choice for clipping. Once installed in

the system, a small amount of additional work would be required to

tailor it to the boxing problem.

- 148 -

4.3.4.1.3. Object Image Transfer

Regardless of which method is selected to box the object, once

the sprites have been allocated and positioned, the object in

"static" memory must be transferred to the sprite(s). A direct

approach to the problem is to start in the upper left hand corner

of the box and interrogate each pixel within the boxed area on a

line-by-line basis from top to bottom . When a pixel that is "on"

is encountered, its X,Y coordinates are used to determine which are

the corresponding X,Y coordinates of the sprite pattern table, so

that the pixel could be determined and then turned on. Many of the

support subroutines, such as RDVRAM, WRVRAM, FINDAD, and MAP

already exist to support this function.

4.3.4.1.4. Color Transfer

The remaining task is to transfer the appropriate color of the

object to the sprite color block. This could be done in one of two

ways. The first method is to look up the current foreground color

of the static video memory and transfer it to the correct byte in

the sprite attribute table(s) of the sprite(s) that compose

object. The second method is to incorporate a COLOR command and

transfer the color specified directly to the sprite(s) attribute

table.

4.3.4.1.5. Object Removal

the

The last task is to remove the object which is now hidden by

sprite(s), from static memory. Since the perimeter of the

- 149 -

object is already known from the previous boxing sequence the video

RAM addresses can be determined by using subroutine FINDAD. Once

this has been done, using subroutine WRVRAM to set the appropriate

locations to $00 would erase the object.

4.3.4.1.6. Object Motion

If the object were to be moved according to the specified

motion attributes, timers would then be allocated and initialized

to the time values in the animation attribute table. At each timer

"tick", the composite

coordinates of each

incremental movement

object would be moved by updating the X,Y

sprite that composed the object. The

time would be computed by dividing the time

from endpoint to endpoint by the total number of pixels along the

specified or computed path. To avoid irregular pattern movements,

the sprite position should be updated when the end of the active

scan portion of the display is reached. This would allow the most

time for "glitchless" object position updating.

When the object has reached a defined endpoint, the

appropriate delay time would be loaded into a timer, and upon time

out, the movement would repeat or oscillate according to the

command in the animation file.

The above description illustrates how a single object can be

created and moved using the animation command set discussed

earlier. Multiple objects would be created and moved in the same

manner. In addition, many of the low level support subroutines

exist and can be built upon for future enhancements.

- 150 -

4.3.5. Control and Miscellaneous Functions

This section outlines the control and miscellaneous commands

that control the display screen attributes and informs the user of

the "system status". The commands are self explanatory and are

listed below:

* a) CLRSC - Clear the screen

* b) INTIG - Initiate graphics mode

* c) REVID - Reverse video (Reverses foreground and background

color)

* d) PAINT - Colors an object with color specifed

* e) CURSO - Turns cursor on

* f) CURSF - Turns cursor off

* g) CURPOS - Displays the absolute cursor coordinates

* h) SETBGC - Sets the background color

* i) SETFGC - Sets the foreground color

* j) SETBDC - Sets the backdrop color

* k) SETCC - Sets the cursor color

l) STAT - Displays the system status consisting of: cursor

X,Y position, window and viewport dimensions,

foreground color, number of display files,

and memory available

The only commands that require an argument are the ones that deal with

painting or coloring. The colors available to the user are listed in

Figure 2-10.

One point should be discussed here. The current configuration

- 151 -

of the system only supports two colors; the background color and

the foreground color. For example, suppose the current foreground

color is blue. If an object is constructed, all the components of

that object will be blue. If a SETFGC command is issued and

changes the foreground color to red, the object that was blue will

change to red. This problem and possible solutions to it are

discussed in Section 2.1.3.3.2.

The coloring of sprites is a different matter. Sprites, by

their definition can be any of the sixteen colors desired, no

matter what their position is on the screen or their level of

display priority. To use this feature to its fullest extent, a

mechanism to construct small, multiply colored objects from sprites

should exist. This mechanism can be patterned after the preceding

sections discussion of animation files. That discussion pointed

out that in order to have an animation file, the TIME command had

to immediatley follow the DEFIL command. The fact that no TIME

command was used could signal the interpreter that even though no

animation attribute table needs to be constructed, the assembling

of the object should be done with sprites instead of keeping it in

"static" video RAM.

4.3.6. Editor Commands

Because the concept of a file system has been outlined for the

graphics processor, an editor should exist to edit the created

files. The basic editor commands are indicated below.

- 152 -

a) ed - Invokes the editor for use with filename xxx.

b) - Inserts a new line

c) - Deletes a line

d) - Writes out the newly edited file

f) - Quits the editor without saving any changes made

g) - Append to the end of the file

h) - Go to the beginning of a file

i) - Print current line

j) .+n - Go to and print line n lines ahead of current line

k) .-n - Go to and print line n lines before current line

l) cr - Advance thru file line by line

m) - - Go backwards thru a file line by line

n) s - substitute a character or string for a character or string

o) /xxx/ - search for a character or string

Those readers familiar with the UNIX operating system will find a

close resemblance between these commands and those used by ED on

UNIX. A brief description of the actual mechanics of how the

operating system would handle editing follows. When the editor is

invoked by typing "ed filename", a search is made in the file sytem

directory for the file and a pointer to it. If the named file is

not found, the user is informed and the processor returns to the

monitor. If the named file is found, the system obtains the

address of the file and makes a working copy of the file, starting

the copy at the highest RAM location. All modifications are

performed on the working copy. Once it has been updated, the new

file is appended to the end of the present file structure. The

part of the file structure that was below the file being edited,

- 153 -

(including the now-saved new version of that file), is copied over

the old file. In addition, the file address pointers in the file

directory are updated as well.

In order to accomplish this two

exist. The

subroutine.

forward or

efficient routines need to

first one is a block move forward and reverse

This moves the files on a byte by byte basis either

backward in RAM. A fast and efficient subroutine was

written that would move 10K bytes in approximately 0.52 seconds.

The second subroutine that is needed is a string or character

search. This was written and proved to be very quick. These two

subroutines can provide the foundation for continued development of

the editor. In addition, all the subroutine specifications have

been written and the subroutine data flow path has been developed.

These have not been included in this thesis because the main thrust

of the project centered around the graphics hardware and language.

An interim solution is to create display files on a host system and

use the editing features contained in the host’s operating system.

The display files can then be downloaded and executed by the

graphics display processor.

- 154 -

5. Contributions

~.~. Summary of the Project

The primary motivation for this project was the need for a low

cost graphics system, capable of producing relatively simple

objects, which would include both hardware and software support to

move or animate the objects without screen flicker. In addition,

because of the intended use of the system, a reverse video

operation that was also flicker free was required. In reviewing

the scope of such a project, many problems needed to be addressed

in the "proof of concept" design of this system. At the time of its

design, the VDP was the only device of its kind that was available.

The project was divided into two tasks:

and the

hardware.

bitslice

the hardware design

software design to support the "proof of concept" of the

The decision to use the VDP over the microprocessor/

approach was influenced by two factors. The first factor

was economics. The VDP and its associated support hardware are

much less costly than the microprocessor/bitslice and their

associated hardware. Second, the VDP embodied the unique concept

of multiple display planes (both pattern planes and sprite planes)

that made it easier to meet the animation objective at a reduced

cost.

The VDP needed to be matched with a microprocessor that would

act as a front end device to effectively manage the VDP. The off

loading of functions was done in hardware where it was deemed

practical to do so. This resulted in the incorporation of hardware

- 155 -

timers, and additional ACIA’s. The additional ACIA

graphics processor to be connected to a host computer.

were used to timeslice the video display and provide a

for the objects in the animation file.

allowed the

The timers

time base

Initially, the software task of the project dealt with the

implementation of a few commands to demonstrate the capabilities of

the hardware that had been designed. This task became somewhat

more complicated as the need was recognized for support software to

effectively demonstrate command interpretation. First, the

language had to be designed. This language consisted not only of

graphics primitives, but also included animation primitives. To

support the decoding of the commands, an interpreter had to be

designed and written. This led to the design and implementation

of the terminal support, lexical analyzer, parser and error handler

software. The editor and file handler were conceptually designed

and presented in this thesis. This software development increased

the design time considerably, but provided a strong foundation for

future enhancements.

5.2. Thesis Contributions

The author believes that the following

the contributions and goals of the project:

activities constitute

(i) In Section 2 the design of a low cost graphics engine

consisting of a 6502 microprocessor and TMS 9918 video display

controller was presented. An evaluation was performed of

- 156 -

possible alternative architectures

reasons were presented for the

microprocessor/VDP architecture.

that could be used, and

final choice of the

(ii) The resultant system produces a low resolution graphics

display capable of performing rapid screen updates, displaying

multiple planes, and generating composite objects with the

additional attributes of continual rapid movement of the

object on the screen without flicker.

(iii) Section 3 introduces the design of a graphics language and

support software to fully utilize the hardware. The graphics

primitives were designed in detail with respect to syntax and

semantics. The animation commands and their actions were

specified extensively, along with full descriptions of the

perceived implementation details.

(iv)

handle

Section

terminal

The software design and implementation of the interpreter

the graphics primitives are

4. This section includes

interface, lexical scanner,

to

discussed in detail in

the monitor/debugger,

parser, display file

construction and usage, and error handler.

(v) Section 4 also evaluates various algorithms for line and

Novel painting and

along with their

circle generation, and for painting.

circle generation algorithms are described

actual software implementation details.

- 157 -

5.3. Recommendations for Future Work

In view of the continuing advances in microprocessor and

display controller technologies the author proposes the following

subjects for future work:

5.3.1. Hardware

The incorporation of a second and possibly a third VDP, in

parallel with the original, to increase the number of sprites

and object planes.

Interfacing a joystick/mouse to the system (the interface

hardware exists, the software needs to be developed to handle

it) to greatly enhance the user interface.

The design of a high resolution microcomputer/bitslice display

controller, that would use the concept of multiple paralled

display planes similar to the VDP.

5.3.2. Software

Continue the development of the language as described

thesis.

in this

In addition to incorporating a display list editor, design an

object editor that can remove an object from the screen by

following outline pixels and delete that portion of the object

in the object’s display list.

- 158 -

Add user friendly features such as on-line help files

use of various commands.

fo r the

d. Allow objects to be constructed by rubberbanding.

BIBLIOGRAPHY

Aho, Alfred V., and Jeffery D. Ullman, Principles
Design, 2nd edition., Addison-Wesley, March,1978.

of Compiler

" Byte ,VolBeetem,John., "Vector Graphics for Raster Displays, ~ .
Number 10, (October, 1980), 286-293.

5,

Bresenham,Jack., "A Linear Algorithm
Display of Circular Arcs",
Machinery, February, 1977.

for Incremental Digital
Association for Computing

Browne,Jack and Charles Melear, "Simplifying Video - Display Design
" Electronic Design, Volby Using a Versatile IC Controller, .

27, Number 13, (June, 1979), 69-80.

Butland, David and Judy, "An Easy-to-Use Graphic Drawing
Computer, Vol. 13, Number 7, (July, 1980), 69-80.

Package,"

Clark,James, "A VLSI Geometery Processor for Graphics,"
Vol. 13, Number 7, (July, 1980), 59-68.

Computer,

Capowski,Joseph J , "The Neuro Science Display Procesor" Computer,¯

Vol. 11, Number 11, (November, 1978), 48-56.

Conrac Division Raster Graphics Handbook, Chapter 4, SIGGRAPH Core
Standards, 4-1 - 4-30, Conrac Corporation, 1981.

Jordan,B.W. Jr., and R.C. Barrett, "A Cell Organized Raster Display
for Line Drawing," Proceedings of The IEEE Conference on
Computer Graphics, Pattern Recognition, and Data Structure,
(May, 1975),

Laws,B.A., "A Gray Scale Graphic Processor Using Run Length
Encoding," Proceedings of The IEEE Conference on Computer
Graphics, Pattern Recognition and Data Structure, (May, 1975),

7.

Loceff,Michael, "A New Approach to High-Speed Computer Graphics:
The Line," Computer , Vol. 13, Number 6, (June, 1980), 56-65.

Lucido,Anthony P., "An Overview of Directed Beam Graphic Display
Hardware," Computer, Vol. 11, Number 11, (November 1978), 29-
37.

"A Brief, Personal History of Computer Graphics,Machover,Carl,
Computer, Vol. 11, Number 11, (November, 1978), 38-45.

Machover,Carl, and Robert Blauth,
Computer Vision, 1980.

ed., The CAD/CAM Handbook ,

Masscomp, Inc."Masscomp Computer Graphics Users Manual,"
Inc., 1983.

Masscomp,

Mello,James A. and John Greaves, "Multi-Processing Improves
Throughput and Response in a Vector to Raster Converter,"
Computer Design, Vol. 19, Number 3, (March, 1980), 127-133.

Myers,Ware, "Computer Graphics: The Human
Vol. 13, Number 6, (June, 1980), 45-54.

Int rface," Computer,

Myers,Ware, "Computer Graphics: A Two Way Street,"
13, Number 7, (July, 1980), 45-54. 49-57.

Computer ,Vol.

Myers,Ware, "Interactive Computr Graphics: Flying High, Parts I &
II," Computer, Vol 12, Number 7, (July 1979), Vol. 12, Number
8, (August, 1979), 52-67.

NEC Electronics,"The uPD7220/GDC Design Manual",

USA, Inc., 1983.
NEC Electronics

Newman,William M. and Robert F. Sproul, Principals of Interactive
Computer Graphics, 2nd ed., McGraw-Hill Inc., 1979.

Preiss,Richard B. "Storage CRT Display Terminals : Evolution and

Trends," Computer, Vol. 11, Number 11, (November, 1978), 20-
27.

Shaw,Alan C., The Loqical Desiqn of OperatinQ Systems-,
Hall, 1974.

Prentice-

Sutherland,Ivan E., Edaward Cheadle, James Kajiya, °’A Random-Access
Video Frame Buffer," Proceedings of The IEEE Conference on
Computer Graphics, Pattern Recognition and Data Structure,
(May, 1975),

Texas Instruments, "TMS 9918 Video Display Processor Data
November,1980.

Manual"t

Ziebelman,Peter, "Display Chip and Basic Keep Graphic Costs Down,"

Electronic Design, Vol. 28, Number 22, (October 25, 1980),
135-141.

APPENDIX

Texas Instruments TMS 9918 Data Manual

Mathematical Derivation of the Circle Drawing Algoirthm

Monitor Commands and Usage

Implemented Commands and Usage

System Schematic

Board Photographs

Sample Display Files

Photgraphs of Monitor (Execution of Display Files)

Creating Display Files Downloading to the Graphics Machine Under Unix

Graphics Interperter Source File

Download Program Source File

